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Rovibronic energy levels and properties of the Br(2P)-HCN complex were obtained from three-dimensional
calculations, with HCN kept linear and the CN bond frozen. All diabatic states that correlate to the2P3/2 and
2P1/2 states of the Br atom were included and spin-orbit coupling was taken into account. The 3× 3 matrix
of diabatic potential surfaces was taken from the preceding paper (paper 1). In agreement with experiment,
we found two linear isomers, Br-NCH and Br-HCN. The calculated binding energies are very similar:D0

) 352.4 cm-1 andD0 ) 349.1 cm-1, respectively. We established, also in agreement with experiment, that
the ground electronic state of Br-NCH has|Ω| ) (1/2) and that Br-HCN has a ground state with|Ω| ) (3/2),
where the quantum number,Ω, is the projection of the total angular momentum,J, of the complex on the
intermolecular axisR. This picture can be understood as being caused by the electrostatic interaction between
the quadrupole of the Br(2P) atom and the dipole of HCN, combined with the very strong spin-orbit coupling
in Br. We predicted the frequencies of the van der Waals modes of both isomers and found a direct Renner-
Teller splitting of the bend mode in Br-HCN and a smaller, indirect, splitting in Br-NCH. The red shift of
the CH stretch frequency in the complex, relative to free HCN, was calculated to be 1.98 cm-1 for Br-NCH
and 23.11 cm-1 for Br-HCN, in good agreement with the values measured in helium nanodroplets. Finally,
with the use of the same potential surfaces, we modeled the Cl(2P)-HCN complex and found that the
experimentally observed linear Cl-NCH isomer is considerably more stable than the (not observed) Cl-
HCN isomer. This was explained mainly as an effect of the substantially smaller spin-orbit coupling in Cl,
relative to Br.

1. Introduction

The series of weakly bound complexes X-HY has received
an increasing amount of attention, both experimental1-5 and
theoretical,6-13 especially in view of their role as reaction
precursors in the hydrogen exchange reactions X+ HY f HX
+ Y, with X, Y ) F, Cl, Br, O, OH, CN. Because of the open-
shell configuration of the X radical in its ground state, electronic
degeneracies occur in these complexes, and their theoretical
description has to go beyond the Born-Oppenheimer ap-
proximation. One of the complexes recently studied experi-
mentally by Merritt et al.5 is Br(2P)-HCN. It was prepared in
liquid helium nanodroplets in a molecular beam setup and
studied by high-resolution infrared spectroscopy. This species
is particularly interesting because it was found to occur in two
isomeric forms: Br-HCN and Br-NCH, both linear. In the
preceding paper, paper 1, we outlined a diabatic model that
involves the asymptotically degenerate electronic states and their
coupling, which is suitable to compute the rovibronic levels of
this open-shell complex. We also presented ab initio calculated
diabatic potential surfaces, both diagonal and off-diagonal, and

their analytic representation in a form that is convenient for
bound-state calculations. The present paper describes the
calculation of the rovibronic states and the comparison of the
results with the experimental data.

2. Bound-State Calculations

The method that we apply to compute the rovibronic levels
of Br(2P)-HCN is described in detail in ref 14 and has been
used previously in our group to study Cl-HCl10,11 and Cl-
HF.13 It is based on earlier work for open-shell atom closed-
shell diatom complexes by Alexander15 and by Dubernet and
Hutson.16,17 Of course, Br(2P)-HCN is not an atom-diatom
complex, but for our goal the study of the structure and stability
of this complex and its infrared spectrum associated with the
CH stretch mode of HCN, it is justified to treat the HCN
monomer as a pseudodiatom by fixing the CN bond length and
keeping the molecule linear. More details on this approximation
are given below.

The three internal coordinates varied areR, the length of the
Jacobi vectorR pointing from the Br nucleus to the center-of-
mass of HCN, the CH bond lengthrCH, and the angleθ between
the vectorsR and rCH, where the latter is the vector pointing
from the C nucleus to the H nucleus. The Hamiltonian is defined
in a body-fixed(BF) frame with itsz axis alongR and rCH in
the xz plane
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whereµAB is the reduced mass of the atom (A ) Br)-molecule
(B ) HCN) complex. The atomic masses aremH ) 1.0078250321
u, mC ) 12 u,mN ) 14.0030740052 u, andmBr ) 78.9183376
u. The operatorsλ̂ and Ŝ and represent the orbital and spin
angular momenta of the Br(2P) atom, respectively, with the
atomic quantum numbersλ ) 1 andS) (1/2). The operatorĵA

) λ̂ + Ŝ represents the total electronic angular momentum of
the Br atom, whereasĵB is the angular momentum associated
with the rotation of the HCN monomer, andĴ is the total angular
momentum of the complex. We assume that the spin-orbit
coupling in the Br atom is not affected by the relatively weak
interaction with the HCN molecule so that we may use the
atomic spin-orbit parameterA ) -2457 cm-1 as a constant in
eq 1. The 3× 3 matrix of diabatic potentialsVµ′,µ

(λ) (R,rCH,θ) that
couple the diabatic states|λ, µ〉 with projectionµ ) -1, 0, 1
on thez axis was computed and described in paper 1.

The HCN monomer Hamiltonian is

whereI(rCH) is the moment of inertia of linear HCN calculated
as a function of the CH bond length with the CN bond fixed at
the experimental equilibrium valuerCN ) 2.1793a0.18 The
reduced mass,µB, associated with the CH stretch coordinate,
rCH, is defined with the mass of the H atom and the massmCN

) mC + mN of the pseudoatom CN. The potentialVHCN(rCH)
was obtained from the accurate empirical HCN force field
determined by Carter et al.19 by keeping the molecule linear
and fixing the CN bond length atrCN ) 2.1793a0 (the same
equilibrium value as used in the force field). In reality, the CH
stretch mode of HCN also involves some stretching of the CN
bond. The reason that we may consider the CN bond to be rigid
in the present study is that we do not wish to determine the
absolute frequency of the CH stretch mode in Br-HCN, but
only the red shift of this mode caused by the interaction with
the Br atom. The following arguments are used to justify our
model. First, let us look at the results of ab initio calculations
at the CCSD(T)/aug-cc-pVDZ level (for the acronyms, see paper
1). These results, displayed in Figure 1, show that the potential
VHCN(rCH) computed with the CN bond frozen at its equilibrium
distance practically coincides with the curve obtained by
optimizing the CN distance for every value ofrCH. Second, in
a normal-mode analysis with the force field of Carter et al.,19

the amplitude of the CN stretch component involved in the
harmonic normal coordinate of the CH stretch mode is quite
small. Third, when we compute the CH stretch frequency with
the full force field of Carter et al. and with the CN bond frozen,
the values are 3310.81 and 3199.32 cm-1, respectively. The
harmonic values are 3414.27 and 3306.17 cm-1. The experi-
mental CH stretch frequency in HCN is 3310.81 cm-1. Although
the frequency changes considerably by fixing the CN bond
length (the relative change is only 3% though), we believe that
the model with CN frozen is sufficiently good to get a fairly

accurate red shift. In this context, it is also worthwile to mention
that there is a debate going on about whether the CN bond can
be regarded as a spectator in the dynamics of different chemical
reactions.20-22

The basis used to diagonalize the Hamiltonian of eq 1 is the
same as that in ref 13. The radial basisønR(R) consists of a
contracted set of sinc-DVR (sinc function discrete variable
representation) functions. The contraction coefficients are the
eigenvectors of a radial motion problem, solved by the sinc-
DVR method23 on a large grid, with the radial potential given
by the isotropic componentV0,0

0 (R,rCH) of the diabatic Br-
HCN potentialV0,0(R,rCH,θ), see eq 2 of paper 1, forrCH )
2.0440a0. This value ofrCH is one of the values on the grid
described in paper 1; it is equal to the calculated equilibrium
CH distance in HCN. To reach convergence of the radial basis
more quickly, by including the effect of continuum wave
functions, we added to this isotropic potential a term linear in
R. The slopeR ) 219 cm-1/a0 of this term was optimized
variationally in calculations of the ground state and some low-
lying levels of the complex. A similar basisφnr(rCH) of
contracted sinc-DVR functions was used for the CH stretch
coordinate. The basis functionsφnr(rCH) are jB ) 0 eigenfunc-
tions of the monomer HamiltonianĤHCN in eq 2 computed by
the sinc-DVR method. Here, it is not necessary to add a linear
term because the potentialVHCN(rCH) has a much deeper well
than the intermolecular potentialV0,0(R,rCH,θ).

Because the spin-orbit coupling in the Br atom is very large,
it is convenient for the interpretation of the results and the
assignment of approximate quantum numbers to the eigenstates
to use the spin-orbit coupled diabatic basis|jAωA〉 constructed
in eq 4 of paper 1. The spin-orbit coupling termAλ̂ Ŝ in the
Hamiltonian is diagonal in this basis, see paper 1. The total
(electronic) atomic angular momentum of Br takes on the values
jA ) (1/2) with projectionsωA ) ((1/2) on the dimerz axis and
jA ) (3/2) with projectionsωA ) ((1/2), ((3/2).

The full three-dimensional BF basis is

where YjB,ωB(θ,0) are spherical harmonics andDM,Ω
(J) (R,â,φ)*

are symmetric rotor functions. The Euler angles (R,â,φ)
determine the orientation of the BF frame with respect to a
space-fixed laboratory frame. The kets| jAωA〉 denote the spin-
orbit coupled diabatic electronic states. The quantum numbers
jB,ωB refer to the rotation of the HCN monomer in the complex,
with ωB being the projection ofjB on the BFzaxis. The quantum
numberΩ ) ωA + ωB is the total projection of the atomicĵA

and molecularĵB angular momenta on the BFz axis. All of
these are approximate quantum numbers. Exact quantum
numbers are the total angular momentum of the complex,J, its
projection,M, on the space-fixedzaxis, and the parity,p, under
inversion. In the actual calculations, we used a parity-adapted
basis, cf. eq 6 of ref 13. The spectroscopic parity is defined by
ε ) p(-1)J-S. States withε ) 1 andε ) -1 are labelede and
f, respectively.

In addition to the three-dimensional (3D) calculations, we
made one-dimensional (1D) and two-dimensional (2D and
2+1D) calculations. The 1D calculations were made for fixed
R values ranging from 6 to 16a0 and rCH frozen at the
experimental CH equilibrium distance 2.0135a0. The functions
|nR〉 and |nr〉 were left out of the basis, and the radial kinetic
energy terms were omitted. The HCN rotational constant in these
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calculations wasB0 ) 1.47822 cm-1.19 In the 2D calculations,
we fixed rCH at the equilibrium value of 2.0135a0 or at the
vibrationally averaged values ofr0 ) 2.04099a0 for V ) 0 and
r1 ) 2.09900a0 for V ) 1, and omitted the basis|nr〉 and the
corresponding radial kinetic energy term. WithrCH ) 2.0135a0

and 2.04099a0, we used the HCN rotational constantB0 )
1.47822 cm-1; with rCH ) 2.09900a0, we usedB1 ) 1.46774
cm-1. In the 2+1D calculations, we first averaged the full three-
dimensional potentials over the CH stretch coordinaterCH with
the V ) 0 or V ) 1 CH stretch functions of HCN. Next, we
performed two-dimensional calculations with theV ) 0 or
V ) 1 averaged potentials and the correspondingly averaged
rotational constantsB0 ) 1.478474 cm-1 and B1 ) 1.46535
cm-1 of HCN. One may observe that the latter values ofBV
differ slightly from the experimental values used in the 1D and
2D calculations. The reason is that our 2+1D values were
computed with the CN bond length fixed at the equilibrium
distance. The 2+1D model is equivalent to a full 3D calculation
with the basis|nr〉 restricted to a single function with eithernr

) 0 or nr ) 1 because the basis|nr〉 consists of eigenfunctions
of the monomer HamiltonianĤHCN.

The 3D calculations were limited toJ ) (1/2) and (3/2),
whereas in the 2+1D model we computed the rovibronic states
for J ) (1/2), (3/2), (5/2), and (7/2). In all calculations we
performed a full diagonalization of the Hamiltonian matrix in
the given parity-adapted basis. In 3D calculations, the lower
levels of the complex correspond toV ) 0 of the CH stretch
mode; states that correspond toV ) 1 of the CH stretch are
much higher in energy and were identified among the highly
excited intermolecular modes by a population analysis of the
eigenstates. In the 2D calculations, we truncated the basis at
nR

max ) 17 andjB
max ) 17. In the 2+1D model, we truncated at

nR
max ) 16 andjB

max ) 16. In convergence studies, we found that
an increase of each of these truncation parameters by 1, both in
2D and 2+1D, changed the ground state energy by less than
10-5 cm-1 and the somewhat higher levels by less than 10-4

cm-1. In the full 3D model, we truncated atnR
max ) 14, jB

max )

14 andnr
max ) 4. Here, the ground level changed by less than

10-3 cm-1 and the somewhat higher levels by less than 10-2

cm-1 if the truncation parameters are increased by 1. Energy
differences, such as vibrational and rotational excitation energies,
are converged significantly better, however.

3. Results and Discussion

3.1. Rovibronic Levels from 1D Calculations. The 1D
calculations with fixedR and the CH distance frozen at the
experimental equilibrium value of 2.0135a0 were made for parity
e and total angular momentumJ ) (1/2) andJ ) (3/2). Figure 2
shows the calculated energy levels as functions ofR in the range
from R ) 6 to 16a0. These curves correspond to the so-called
adiabatic bender model of refs 24 and 25, which is extended
here to include multiple coupled electronic states. To understand
the behavior of these curves, it is useful to know thatΩ, the
projection of the total angular momentumJ on the dimerzaxis,
is a nearly good quantum number. When the curves withJ )
(1/2) and J ) (3/2) nearly coincide, this implies that the
corresponding levels have|Ω| ) (1/2). The energy difference
between the curves withJ ) (3/2) andJ ) (1/2) involves only
the overall rotation of the complex in that case. When aJ )
(3/2) curve is well-separated from theJ ) (1/2) curves, this
implies that|Ω| ) (3/2). Using this rule, we see that the deepest
minimum atR ) 7.3a0 corresponds to a level with|Ω| ) (1/2),
whereas the second minimum atR ) 8.7a0 corresponds to a
level with |Ω| ) (3/2). Looking at the potential surfaces in
Figures 4 and 5 of paper 1, one may guess that these two minima
correspond to linear Br-NCH and linear Br-HCN, respectively.
The latter has a much larger equilibrium distance,Re, than the
first one, but it seems to be about equally stable. One also
observes a series of higher curves with minima at more or less
the same distances,R. These correspond to a series of excited
vibronic levels of either Br-NCH or or Br-HCN with |Ω|
values that are sometimes different from their ground-state
levels. These excited levels are combinations of bend excited
states withωB * 0 and the electronic states withωA ) ((1/2)

Figure 1. Energy of HCN as function of the CH bond length with the CN bond length frozen or optimized. Notice that the two energy curves
coincide. The scale on the left-hand side is the CN bond length.
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and((3/2). Their |Ω| values follow directly from these quantum
numbers becauseΩ ) ωA + ωB. The ground state hasωB ) 0
and, hence,Ω ) ωA. Asymptotically, these levels correlate with
the fourfold degenerate2P3/2 ground state of the Br atom and
the ground and excited rotational levels of HCN. The results
from the 2D and 3D calculations discussed below provide more
details.

3.2. Rovibronic Levels from 2D and 3D Calculations.
Before we discuss the results of the 2D, 2+1D, and 3D
calculations, let us mention that the rovibronic wave functions
(discussed below) clearly show that all states up to an energy
of about 106 cm-1 above the ground level are localized either
near the linear Br-NCH geometry (θ ) 0°) or near the linear
Br-HCN geometry (θ ) 180°). Some of the higher excited
levels below this limit show large-amplitude bend motions, but
it is quite obvious that they belong to either Br-NCH or Br-
HCN. Hence, we will discuss the properties of each of these
isomers.

The binding energiesD0 of Br-NCH and Br-HCN computed
with the different models are listed in Table 1. Clearly, the
binding energy of Br-NCH depends only slightly on the model
and on the CH stretch mode being excited or not, whereasD0

of Br-HCN is much more sensitive. This can be understood
from the result in paper 1 that theDe and Re values of Br-
HCN depend more strongly on the length of the CH bond than
the De and Re values of Br-NCH. This, again, is reasonable
because the CH bond is in direct contact with the Br atom in
linear Br-HCN, whereas it is on the other side in linear Br-
NCH. The 2+1D model with the 3D potentials averaged over
the V ) 0 or V ) 1 wave functions of the CH stretch mode is
much closer to the full 3D results than the 2D model withrCH

fixed atr0 or r1. A similar conclusion was drawn for Cl-HF.13

Another conclusion, which is quite striking, is that the binding

energies of Br-NCH and Br-HCN differ by as little as 3.3
cm-1 (in the 3D model).

Tables 2 and 3 show the rovibronic levels of Br-NCH and
Br-HCN, respectively, for theV ) 0 ground state of the CH
stretch mode, total angular momentumJ ) (1/2) to (7/2), and
spectroscopic paritye. ForJ ) (1/2) and (3/2), we also included
the full 3D results in these tables. In accordance with the
spectroscopic convention26 for linear open-shell molecules, we
labeled the levels with the term symbols2S+1KP . The vibronic
quantum numberK corresponds to the sum of the electronic
orbital angular momentum usually denoted byΛ and the
vibrational angular momentum of the bend mode commonly
labeled byl. In our treatment, which includes the full range of
anglesθ, the relevant electronic angular momentum quantum
number isµ, with the valueµ ) 0 for the Σ ground state of
linear Br-NCH and the valuesµ ) (1 for theΠ ground state
of linear Br-HCN. The vibrational angular momentum,l, is
given byωB. Hence, the quantum number,K, is given byK )
µ + ωB, which can also be written asK ) Ω - Σ ) ωA + ωB

- Σ, whereΣ ) ((1/2) is the component of the spinS on the
intermolecularzaxis,R. The quantum number that is commonly
denoted byP corresponds to|Ω| in our case. The ground state
of Br-NCH with |Ω| ) (1/2) corresponds toK ) 0 and can be
written in the spectroscopic notation26 as 2Σ(1/2). The ground
state of Br-HCN with |Ω| ) (3/2) has |K| ) 1 and can be
written as2Π(3/2). Because|Ω| is a nearly good quantum number,
the energy levels in these tables are sorted according to their
|Ω| values. The rows of levels with the same|Ω| and increasing
values ofJ g|Ω| are end-over-end rotational progressions of
the same internal state of the complex. Actually, the levels of
Br-NCH and Br-HCN originate from a single calculation for
each value ofJ. We could clearly assign the levels to either
Br-NCH or Br-HCN on the basis of the electronic angular

Figure 2. Rovibronic levels from 1D calculations withR andrCH ) re fixed, as functions ofR. Closed lines correspond toJ ) (1/2), and dashed
lines correspond toJ ) (3/2).
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Figure 3. Density distributions corresponding to the Br-NCH
conformation from the 2+1D model forVCH ) 0. They are obtained
by integration of the squared absolute wave functions over the electronic
coordinates and over all rotation angles (R,â,φ) of the complex. The
energies and quantum numbers correspond to those in Table 2.

Figure 4. Density distributions corresponding to the Br-HCN
conformation from the 2+1D model forVCH ) 0. For details, see the
caption of Figure 3. The energies and quantum numbers correspond to
those in Table 3.
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momentum projection|ωA|, which turns out to be (1/2) for the
ground state of Br-NCH and (3/2) for the ground state of Br-
HCN. Also, on the basis of the rovibronic wave functions being
localized near either one the linear equilibrium geometries we
could make such a distinction. Examples are shown in Figure
3 for Br-NCH and Figure 4 for Br-HCN. Actually, we did
not plot the wave functions in these figures but rather the density
distributions obtained by taking the absolute square of the wave
function and integrating over the electronic coordinates and the
overall rotation angles.

The density distributions as shown in Figures 3 and 4 can
also be used to assign the vibrational quantum numbersVs and
Vb of the complex. The quantum numberVs refers to the Br-
HCN or Br-NCH stretch mode in the coordinateR; the quantum
numberVb refers to the bend mode of the linear complexes.
The quantum numberωB is the vibrational angular momentum
of the bend mode. This quantum number and the electronic
angular momentum projection,ωA, occur in the diabatic basis
used. In the complex, they are approximate quantum numbers
and were obtained by a population analysis of the eigenstates.
When the values ofωA and ωB are given in the tables, this
implies that the eigenstates have more than 50% (in most cases
much more) of this character. In the assignment of the bend
quantum numberVb, the rule thatωB runs from-Vb to Vb by

steps of 2 was very helpful. The upper panel in Figure 3 is
clearly the ground rovibronic state of Br-NCH, the middle
panel is the bend fundamental, and the lower panel is the bend
overtone mixed with the stretch fundamental in a Fermi
resonance. In Figure 4, the upper panel is the ground rovibronic
state of Br-HCN, the middle panel is the bend fundamental of
that complex, and the lower panel is the pure stretch fundamental
in this case.

In Table 2, one reads that the ground state of Br-NCH with
approximate quantum numbersωB ) Vb ) Vs ) 0 and energy
E ) -352.37 cm-1 occurs forJ ) |Ω| ) (1/2) and is dominated
by the diabatic state withjA ) (3/2) and |ωA| ) (1/2). The
fundamental bend frequency of Br-NCH is 23.0 or 23.9 cm-1,
depending on whether one considers the|Ω| ) (3/2) or the|Ω|
) (1/2) bend excited level. The density distribution in the middle
panel of Figure 3 corresponds to the latter level, but the
distribution of the former state (not shown) is almost indistin-
guishable. The only difference between these states is that the
electronic angular momentumωA ) ((1/2) is coupled parallel
or antiparallel to the bend angular momentumωB ) (1.
Because the spin-free ground state of Br-NCH is a Σ state,
see paper 1, the value ofωA ) ((1/2) is purely determined by
the projection of the spinS) (1/2) on the dimer axis. The orbital
angular momentum vanishes for aΣ state, there is only a small
indirect Renner-Teller coupling, and the two bend frequencies
are very nearly the same. In Section 3.4, we will discuss this in
more detail. The modes at 39.7 and 51.5 cm-1 are the bend
overtone and the stretch fundamental, but according to the
density distributions these are mixed into a Fermi resonance.
In Table 3, one can see that the ground state of Br-HCN has
J ) |Ω| ) (3/2) and energyE ) -349.11 cm-1. It is dominated
by the diabatic state withjA ) |ωA| ) (3/2). The bend
fundamental frequency, 38.7 cm-1, of Br-HCN is considerably
higher than that for Br-NCH. This value is derived from the
bend excited level with|Ω| ) (1/2); the bend excited level with

TABLE 1: Binding Energies D0 (parity e) and Red Shifts of
the CH Stretch Frequency Relative to Free HCN (in cm-1)

Br-NCH (J ) (1/2)) Br-HCN (J ) (3/2))

model VCH ) 0 VCH ) 1 red shift VCH ) 0 VCH ) 1 red shift

2D (re) 351.78 339.52
2D 352.54 354.16 1.62 345.66 359.29 13.63
2+1D 352.36 354.33 1.97 348.68 371.52 22.84
3D 352.37 354.35 1.98 349.11 372.22 23.11
experiment5 1.65 26.59/23.80a

a The latter value is corrected for the He matrix shift, see the text.

TABLE 2: Lowest Bound States ofe Parity of Br -NCH (θ ) 0°) from the 2+1D Model with WCH ) 0a

term |ωA| |ωB| Vb Vs J ) (1/2) J ) (3/2) J ) (5/2) J ) (7/2)

|Ω| ) (1/2)
2Σ(1/2) 0.5 0 0 0 -352.3609 (-352.3701) -352.3044 (-352.3136) -352.1428 -351.8762
2Π(1/2) 0.5 1 1 0 -328.4749 (-328.4850) -328.2843 (-328.2945) -327.9690 -327.5328
2Σ(1/2) 0.5 0 2 0 -312.7127 (-312.7229) -312.6530 (-312.6632) -312.4857 -312.2108
2Σ(1/2) 0.5 0 0 1 -300.9041 (-300.9133) -300.8471 (-300.8564) -300.6863 -300.4217
2Π(1/2) 0.5 1 3 0 -291.3396 (-291.3506) -291.1451 (-291.1562) -290.8230 -290.3774
2Π(1/2) 0.5 1 1 1 -276.3575 (-276.3672) -276.1714 (-276.1812) -275.8630 -275.4356
2Σ(1/2) 0.5 0 4 0 -274.7948 (-274.8064) -274.7317 (-274.7433) -274.5584 -274.2751
2Σ(1/2) 0.5 0 0 2 -264.3586 (-264.3680) -264.2987 (-264.3081) -264.1335 -263.8630
2Π(1/2) 0.5 1 5 0 -254.8922 (-254.9048) -254.6932 (-254.7058) -254.3637 -253.9075
2Σ(1/2) 0.5 0 2 1 -253.0965 (-253.1052) -253.0373 (-253.0461) -252.8747 -252.6084

|Ω| ) (3/2)
2Π(3/2) 0.5 1 1 0 -329.2981 (-329.3082) -329.0794 -328.7670
2∆(3/2) 0.5 2 2 0 -304.6535 (-304.6649) -304.3525 -303.9325
2Π(3/2) 0.5 1 3 0 -292.1430 (-292.1540) -291.9203 -291.6022
2Π(3/2) 0.5 1 1 1 -277.2085 (-277.2182) -276.9904 -276.6798
2∆(3/2) 0.5 2 4 0 -268.6951 (-268.7074) -268.3888 -267.9614
2Π(3/2) 0.5 1 5 0 -255.7079 (-255.7169) -255.4971 -255.1776
2∆(3/2) 0.5 2 2 1 -253.7150 (-253.7256) -253.4211 -253.0107

|Ω| ) (5/2)
2∆(5/2) 0.5 2 2 0 -306.2819 -305.9371
2Φ(5/2) 0.5 3 3 0 -280.1198 -279.7050
2∆(5/2) 0.5 2 4 0 -270.3068 -269.9553
2∆(5/2) 0.5 2 -255.4390 -255.0877

|Ω| ) (7/2)
2Φ(7/2) 0.5 3 3 0 -282.5384

a Energies in cm-1 relative to the energy of Br (2P3/2) and HCN(VCH ) 0). The numbers in parentheses are from 3D calculations. Quantum
numbersVs andVb refer to the intermolecular stretch and bend. The approximate quantum numbersωA andωB and the term symbol2S+1K|Ω| are
explained in the text.
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|Ω| ) (5/2) gives a bend fundamental frequency of 41.1 cm-1.
As will be discussed in Section 3.4, this difference can be
explained by the Renner-Teller nonadiabatic coupling of the
bend mode to the electronic angular momentum,ωA, of theΠ
ground state of Br-HCN. The stretch fundamental frequency
of Br-HCN is 45.3 cm-1, not much different from Br-NCH.
From these tables, one can also read the frequencies of the bend
overtone withVb ) 2, which has two components, one withωB

) 0 and one with|ωB| ) 2. The differences between the
frequencies of these components are about 2 cm-1; they are
caused by the anharmocity of the bending potentials. Also,
bend-stretch combination levels and overtones can be observed.
We already mentioned that in Br-NCH the bend overtone and
stretch fundamental mix into a Fermi resonance. Similar
resonances occur between the second and third bend overtone
and the corresponding modes with two bend quanta replaced
by one stretch quantum.

Looking back at the “adiabatic bender’’ curves from the 1D
calculations in Figure 2, we may now conclude that the
minimum at R ) 7.3a0 in the lowest two nearly coinciding
curves with|Ω| ) (1/2) indeed correspond to linear Br-NCH.
The minimum atR ) 8.7a0 in the lowest curve withJ ) |Ω| )
(3/2) represents linear Br-HCN.

The results calculated with the CH stretch mode excited toV
) 1 are qualitatively similar to those obtained forV ) 0.
Therefore, we do not show all of the levels. In Table 1, one
could see already that the complex becomes more strongly
bound when the CH stretch mode is excited and that this effect
is much more important for Br-HCN than for Br-NCH. The
bend and stretch fundamental frequencies of both complexes
are listed in Table 4. One notices there that in Br-HCN the
bend and stretch frequencies are also higher forV ) 1 than for
V ) 0. In Br-NCH, there are hardly any differences between
V ) 0 andV ) 1.

Table 5 for Br-NCH and Table 6 for Br-HCN contain the
parity splittings between the levels ofe and f symmetry. The

splittingsEf - Ee are by far the largest for the|Ω| ) (1/2) levels
with ωB ) 0 in Br-NCH and they increase linearly withJ +
(1/2). This simple linear dependence onJ + (1/2) is well-known
for λ doubling in linear molecules,27 and it was also found in
Cl(2P)-HCl10,11,17and Cl(2P)-HF.13 The parity-splitting char-
acteristics can be understood by considering the Hamiltonian
in eq 1 and the basis in eq 3. The energy difference between
functions withe and f parity is caused by a coupling between
the basis components with (ωA, ωB, Ω) and (-ωA, -ωB, -Ω).
The term in the Hamiltonian that is responsible for this coupling
is the Coriolis coupling operator-2(ĵA + ĵB)‚Ĵ/(2µABR2) and,
in particular, the step-up and step-down terms withĵA

+Ĵ + and
ĵA
-Ĵ- in this operator. The step-up and step-down operators

ĵB
(Ĵ( cannot directly couple basis functions withωB and-ωB

because this quantum number has integer values and the step-
up and step-down operators shiftωB only by (1. The terms
ĵA
(Ĵ(/(2µABR2) couple basis functions with (ωA,ωB,Ω) )

((1/2),0,(1/2)), and (-(1/2),0, -(1/2)). The coupling matrix ele-
ments are

and they cause a first-order splitting between the levels ofe
andf parity, which would otherwise be degenerate. Equation 4
shows that this splitting should indeed be proportional toJ +
(1/2) with a proportionality constant that is 2(jA + (1/2)) times
the expectation value of [2µABR2]-1 over the radial part of the
wavefunction. Because of the very large spin-orbit splitting
between the2P1/2 and2P3/2 states of the Br atom, the quantum
numberjA is nearly (3/2) in the lower levels of the complex.
The expectation value〈[2µABR2]-1〉 is the end-over-end rota-
tional constantB. Hence, the splitting should be about 4B(J +
(1/2)), with B ) 0.0525 cm-1 for Br-NCH (see below). This is
indeed what we see in Table 5 for the levels withωB ) 0 and
|Ω| ) (1/2) of Br-NCH because|ωA| ) (1/2) in this isomer.
Functions withωB ) (1 are only coupled indirectly through
functions withωB ) 0 and show a small parity splitting. For
|Ω| ) (3/2), the splittings are even smaller and they are
proportional to (J - (1/2))(J + (1/2))(J + (3/2)) as pointed out
by Dubernet and Hutson.17 They are due to a higher-order effect
of the Coriolis coupling operatorĵA

(Ĵ(/(2µABR2). In Br-HCN,
which has|ωA| ) (3/2), the splitting is smaller by several orders
of magnitude than in Br-NCH and is proportional toJ + (1/2),

TABLE 3: Lowest Bound States ofe Parity of Br -HCN (θ ) 180°) from the 2+1D Model with WCH ) 0a

term |ωA| |ωB| Vb Vs J ) (1/2) J ) (3/2) J ) (5/2) J ) (7/2)

|Ω| ) (1/2)
2Σ(1/2) 1.5 1 1 0 -310.2585 (-310.5624) -310.1421 (-310.4459) -309.9472 -309.6737
2Π(1/2) 1.5 2 2 0 -274.4774 (-274.6776) -274.3567 (-274.5568) -274.1554 -273.8737
2Σ(1/2) 1.5 1 1 1 -269.7106 (-269.8983) -269.5947 (-269.7823) -269.4000 -269.1266

|Ω| ) (3/2)
2Π(3/2) 1.5 0 0 0 -348.6834 (-349.1115) -348.4911 -348.2218
2Π(3/2) 1.5 0 0 1 -303.5335 (-303.7839) -303.3443 -303.0795
2Π(3/2) 1.5 0 2 0 -276.2600 (-276.2378) -276.0613 -275.7832
2Π(3/2) 1.5 0 0 2 -258.4154 (-255.9429) -258.2300 -257.9705

|Ω| ) (5/2)
2∆(5/2) 1.5 1 1 0 -307.3673 -307.0928
2∆(5/2) 1.5 1 1 1 -266.9047 -266.6289

|Ω| ) (7/2)
2Φ(7/2) 1.5 2 2 0 -268.8726

a Energies in cm-1 relative to the energy of Br (2P3/2) and HCN (VCH ) 0). The numbers in parentheses are from 3D calculations. For an explanation
of the symbols, see Table 2.

TABLE 4: Bend and Stretch Frequencies (in cm-1) of
Br-NCH and Br-HCN for WCH ) 0 and 1

Br-NCH Br-HCN

transition VCH ) 0 VCH ) 1 transition vCH ) 0 VCH ) 1

fundamental bend frequency
2∑(1/2) f 2Π(1/2) 23.9 23.7 2Π(3/2) f 2∑(1/2) 38.5 43.4
2∑(1/2) f 2Π(3/2) 23.0 22.9 2Π(3/2) f 2∆(5/2) 41.1 46.2

fundamental stretch frequency
2∑(1/2) f 2∑(1/2) 51.5 51.4 2Π(3/2) f 2Π(3/2) 45.1 47.6

[( jA(jA + 1) - ωA(ωA ( 1))(J(J + 1) -

Ω(Ω ( 1))]1/2〈[2µABR2]-1〉 ) ( jA + 1
2)(J + 1

2)〈[2µABR2]-1〉

(4)
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see Table 6. The splittings are only shown forV ) 0 of the CH
stretch mode; the results forV ) 1 are very similar.

3.3. Spectroscopic Parameters.Only short stretch progres-
sions withVs e 2 can be seen in Table 2 for Br-NCH and
Table 3 for Br-HCN. When we fitted these to the usual
anharmonic oscillator formula, as we did for Cl-HF,13 we found
the harmonic stretch frequenciesωe and anharmonicity constants
ωexe given in Table 7. For Br-NCH, the stretch mode shows
a large anharmonicity. This is an effect of the Fermi resonance
with the bend overtone that we already observed. In Br-HCN,
the anharmonicity is very small.

From the series of levels calculated forJ ) (1/2) to (7/2) with
the 2+1D model, we computed rotational constants,B, and
distortion constants,D, by a fit to the linear molecule expression

This formula was applied after averaging the energies over the
levels of paritiese and f. The results for the ground state of
each isomer are given in Table 7. One observes in this table
that the rotational constants of Br-NCH and Br-HCN are quite
different. One also observes that excitation of the CH stretch
mode has only a small effect on the rotational constant of the

complex. This effect is probably reduced because of two
opposing phenomena. When the CH stretch is excited the
complex becomes more strongly bound, which tends to decrease
the value of the equilibrium distance,Re. Alternatively, the CH
group becomes longer when it is excited, which will increase
Re through the repulsive interaction. This argument holds in
particular for Br-HCN, but for Br-NCH the effect of the CH
stretch is very small anyway.

From the energy difference between the lowest levels
corresponding toV ) 0 andV ) 1 for the CH stretch mode, we
extracted the red shift of the CH stretch frequency in the
complex, relative to free HCN. The results of different models
are included in Table 1. It is quite natural that the shift is much
larger (23.11 cm-1) for Br-HCN than for Br-NCH (1.98 cm-1)
because of the direct neighborhood of the Br atom to the CH
group.

3.4. Renner-Teller Coupling. Linear Br-HCN is a typical
Renner-Teller system28 of case 1(a),29 because (in the absence
of spin-orbit coupling) it has a twofold degenerate electronic
ground state ofΠ symmetry. When the complex bends theΠ
state splits into oneA′ and oneA′′ state with an energy difference
that is nearly quadratic in the bend angle, see paper 1. The
ground state of Br-HCN with |Ω| ) (3/2) is written in Renner-
Teller notation26 as 2S+1KP ) 2Π(3/2). The same term symbol
holds for the accompanying intermolecular stretch progression
with Vs ranging from 0 to 2. Most interesting are the bend excited
states withVb ) 1 and vibrational angular momentumωB )
(1. They give rise to a bend fundamental with|Ω| ) (1/2)
denoted by2Σ(1/2) and a bend fundamental with|Ω| ) (5/2)
denoted by2∆(5/2). Both of these bend modes are indeed found,
see Tables 3 and 4, as well as the accompanying bend-stretch
combination levels. The fundamental bend frequency for the
2Σ(1/2) levels is 38.7 cm-1, and for the2∆(5/2) levels it is 41.1
cm-1. For the levels that correspond toVCH ) 1, the2Σ(1/2) bend
frequency is 43.4 cm-1 and the2∆(5/2) bend frequency is 46.2
cm-1. These numbers are from the 2+1D calculations because

TABLE 5: Parity Splittings ∆E ) Ef - Ee in cm-1 of Br-NCH (θ ) 0°) for WCH ) 0

|ωA| |ωB| Vb Vs J ) (1/2) J ) (3/2) J ) (5/2) J ) (7/2)

|Ω| ) (1/2)
0.5 0 0 0 0.2022 (0.2022) 0.4043 (0.4043) 0.6064 0.8085
0.5 1 1 0 0.0045 (0.0045) 0.0084 (0.0084) 0.0113 0.0132
0.5 0 2 0 0.2032 (0.2033) 0.4065 (0.4065) 0.6097 0.8128
0.5 0 0 1 0.1977 (0.1977) 0.3954 (0.3954) 0.5931 0.7908
0.5 1 3 0 0.0055 (0.0055) 0.0100 (0.0101) 0.0130 0.0143
0.5 1 1 1 0.0042 (0.0042) 0.0076 (0.0076) 0.0099 0.0109
0.5 0 4 0 0.2043 (0.2043) 0.4085 (0.4085) 0.6127 0.8168
0.5 0 0 2 0.1961 (0.1961) 0.3921 (0.3921) 0.5881 0.7841
0.5 1 5 0 0.0040 (0.0040) 0.0065 (0.0066) 0.0068 0.0046
0.5 0 2 1 0.1921 (0.1921) 0.3842 (0.3842) 0.5762 0.7681

|Ω| ) (3/2)
0.5 1 1 0 0.0006 (0.0006) 0.0022 0.0048
0.5 2 2 0 0.0000 (0.0000) 0.0000 0.0000
0.5 1 3 0 0.0010 (0.0010) 0.0035 0.0078
0.5 1 1 1 0.0007 (0.0007) 0.0027 0.0059
0.5 2 4 0 0.0000 (0.0000) 0.0000 0.0000
0.5 1 5 0 0.0014 (0.0014) 0.0033 0.0075
0.5 2 2 1 0.0000 (0.0000) 0.0001 0.0002

TABLE 6: Parity Splittings ∆E ) Ef - Ee in cm-1 of Br-HCN (θ ) 180°) for WCH ) 0a

|ωA| |ωB| Vb Vs J ) (1/2) J ) (3/2) J ) (5/2) J ) (7/2)

|Ω| ) (1/2)
1.5 1 1 0 0.0027 (0.0027) 0.0054 (0.0054) 0.0082 0.0109
1.5 2 2 0 0.0000 (-0.0001) 0.0000 (-0.0001) -0.0001 -0.0001
1.5 1 1 1 0.0047 (0.0046) 0.0093 (0.0093) 0.0140 0.0186

a For |Ω| g (3/2), all splittings are less than 10-4 cm-1.

TABLE 7: Spectroscopic Parameters (in cm-1) from the
2+1D Model

Br-NCH (θ ) 0°) Br-HCN (θ ) 180°)
VCH ) 0 VCH ) 1 VCH ) 0 VCH ) 1

intermolecular stretch
Ee -383.58 -385.53 -371.27 -395.51
ωe 66.36 66.33 45.18 48.11
ωexe 7.46 7.45 0.016 0.26

rotational constants
E0 -352.29 -354.25 -348.74 -371.58
B 0.05253 0.05254 0.03847 0.03846
D 3.8 10-7 2.5 10-7 2.4 10-7 2.4 10-7

E(J) ) E0 + B[J(J + 1) - Ω 2] - D[J(J + 1) - Ω 2]2 (5)
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the 3D results are not available for|Ω| ) (5/2). The value for
the 2Σ(1/2) levels from 3D calculations is not very different,
however.

We may compare our set of levels to the energy-level diagram
of a 2Π triatomic linear molecule shown in Herzberg’s book,26

Figure 8 of Section I.2. This diagram correlates the energy levels
obtained from a full calculation with the levels obtained when
either the Renner-Teller interaction or the spin-orbit coupling
are set to zero. Herzberg’s “full’’ treatment includes the bending
mode only, and it defines the Renner-Teller interaction
parameter,ε, as the ratio of the harmonic force constants of the
coupling or difference potentialV1,-1 ) [V(A′′) - V1(A′)]/2 at
the linear geometry and the diagonal or sum potential 2V1,1 )
V1(A′) + V(A′′). Note that the bend quantum number,Vb, in our
notation is denoted asV2 in Herzberg’s figure. In Herzberg’s
figure, the levels of the same|K| with the largerP are higher
than the levels with smallerP, whereas in our case the levels
with the largerP are lower. The reason for this reversed order
is that our spin-orbit constant,A, has a negative value, whereas
Herzberg’s is positive. In that sense, the Br-HCN results may
be compared with the level patterns of some other Renner-
Teller systems, Cl-HF13 and He-HF+,30 calculated in our group
earlier. However, the absolute value of 2457 cm-1 of the spin-
orbit parameter,A, in the Br atom is so large that the upper
levels of the spin-orbit doublets in Br-HCN (such as the2Π(1/2)

level that is spin-orbit excited from the ground2Π(3/2) level)
are not bound anymore. Otherwise, the levels from our calcula-
tions follow the pattern of the levels in Herzberg’s picture of a
typical Renner-Teller system.

The splitting of 2.6 cm-1 between the2Σ(1/2) and2∆(5/2) levels
that correspond to the sameVb ) 1 bend fundamental is caused
by the Renner-Teller interaction (parametrized in Herzberg’s
treatment byε), which in our case is represented by the off-
diagonal diabatic potentialV1,-1. This splitting is considerably
smaller than the splitting of 38.6 cm-1 found for Cl-HF.13 But
the bend frequency of Br-HCN is also much lower than that
for Cl-HF, and the spin-orbit coupling is much stronger. In
the work on He-HF+,30 it was shown that this splitting does
not disappear even when the coupling potentialV1,-1 is switched
off. This is a fundamental deviation from Herzberg’s model,
which was shown in ref 30 to be due to the fact that the bending
motion is treated in our work as a hindered rotation rather than
a harmonic vibration as in Renner’s work.

Linear Br-NCH is not a Renner-Teller system because (in
the absence of spin-orbit coupling) it has a nondegenerate
electronic ground state ofΣ symmetry. The spin-orbit coupling
in the Br atom is very strong, however, and we discussed already
in Section 4 of paper 1 that in the ground state of linear Br-
NCH with approximate quantum numbersjA ) (3/2) and |ωA|
) (1/2) the wave function has1/3 of Π character. Hence, it is
interesting to look for effects similar to those of Renner-Teller
coupling. We saw already in Section 3.2 that the fundamental
bend frequency of Br-NCH is 23.0 or 23.9 cm-1, depending
on whether one considers the|Ω| ) (3/2) or |Ω| ) (1/2) bend
excited state. The density distributions of these states are
very similar. The only difference between them is that the
electronic angular momentumωA ) ((1/2) is coupled parallel
or antiparallel to the bend angular momentumωB ) (1. So,
there is a small indirect Renner-Teller splitting of 0.9 cm-1 in
this case.

4. Comparison with Experiment

Experimentally,5 both linear isomers, Br-NCH and Br-
HCN, have been observed spectroscopically in a molecular beam

of He nanodroplets. It was found, in agreement with our results,
that the ground state of Br-NCH has|Ω| ) (1/2) and the ground
state of Br-HCN has|Ω| ) (3/2). For Br-NCH, a red shift of
1.65 cm-1 of the CH stretch frequency was observed, whereas
for Br-HCN the red shift is 25.59 cm-1. Before we compare
with the shifts calculated for the complex in the gas phase, we
should correct the experimental values for a possible matrix
shift induced by the He clusters. A comparison of the shifts
observed for several hydrogen-bonded complexes in the gas
phase and in helium has shown31 that there is indeed such a
matrix effect and an empirical correction formula was pro-
posed: ∆ ) 1.822 + 0.03655X cm-1,5 where ∆ is the
correction that should be subtracted to obtain the gas-phase
value of the red shift andX is the measured red shift in
helium. We used this correction for Br-HCN, where the
red shift is quite large. The shift after correction is 23.80
cm-1, close to our computed value of 23.11 cm-1 (see Table
1). The correction formula was only derived for HX stretch
frequencies in hydrogen-bonded complexes where HX is the
donor, so the H atom is bound directly to the acceptor, and it
cannot be applied to Br-NCH. Moreover, the shift found for
Br-NCH is so small that the correction would give a negative
shift and we omitted it in this case. The value of 1.98 cm-1

obtained from ab initio calculations with the full 3D model is
in good agreement with the uncorrected experimental value of
1.65 cm-1.

The ab initio-computed rotational constants of Br-NCH and
Br-HCN are B ) 0.0525 cm-1 and B ) 0.0385 cm-1,
respectively. The experimental values areB ) 0.019 cm-1 and
B ) 0.0151 cm-1.5 The measured values are smaller than the
computed ones by factors of 2.8 and 2.5, respectively. These
factors are in good agreement with literature values for various
molecules in superfluid helium droplets.31 They are caused by
some of the surrounding helium atoms following the rotation of
the molecule and, thus, increasing its effective moments of inertia.

In our calculations on Br-NCH, we predicted large parity
splittings of the levels withωB ) 0, see Table 5. For the ground
state of Br-NCH with |Ω| ) (1/2), we predicted a splitting of
0.2022 cm-1 for J ) (1/2), which is about 4B ) 0.210 cm-1.
Such a splitting of about 4B that increases linearly withJ +
(1/2) could be very-well rationalized by the theory in Section
3.2, see eq 4. The simulation of the measured spectrum
in ref 5 gave a much smaller parity splitting. Taking into
consideration the reduction ofB by a factor of nearly 3 by
the surrounding helium atoms, the experimental splitting is
about 2B. This would imply, according to our theory for
this splitting in Section 3.2, that the quantum numberjA ) (3/2)
in eq 4 must be replaced byS ) (1/2). In other words, only
the spin is involved in the off-diagonal Coriolis coupling
with the overall rotation of the complex, not the electronic
orbital angular momentum. If this holds, and we fail to see any
other explanation for the discrepancy between theory and
experiment, then this must be an effect of the liquid-helium
matrix.

The (side-)bands associated with the bend and stretch modes
of the complex have not been observed yet. Therefore, we
cannot compare our calculated results with experiment for these
modes. It will be interesting to try and measure such modes.

5. Model Study of Cl-HCN, Role of Spin-Orbit
Coupling

Also, the linear Cl-NCH complex was observed in a helium-
droplet experiment by Merritt et al.,5 but not the hydrogen-
bonded Cl-HCN complex. To understand why both isomers
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were found for the complex of Br with HCN, and only a single
one for the Cl complex, we made some exploratory calculations
of the adiabatic potential surfaces for Cl-HCN. The potentials
turned out to be qualitatively similar to those of Br-HCN. Even
quantitatively, the differences are not very large. We found, for
example, with the same RCCSD(T) method and the same basis
as that used for Br-HCN that the value ofDe for the global
X-NCH minimum in the lowest adiabatic potential is 726 cm-1

for X ) Cl, whereas it was 800 cm-1 for X ) Br. The local
minimum for the linear X-HCN structure corresponds toDe

) 359 cm-1 for X ) Cl and 415 cm-1 for X ) Br. We realized,
because the effect of spin-orbit coupling on the relative stability
of the two isomers was so important for Br-HCN, see Section
4 of paper 1, that perhaps the differences between the Cl
complex and the Br complex are caused mainly by the fact that
the spin-orbit coupling is much smaller in Cl than in Br. To
investigate this hypothesis, we made 2+1D bound state calcula-
tions for the Cl-HCN complex with the same potential surfaces
as those used in our Br-HCN calculations. The only difference
is that we introduced the spin-orbit splitting of 882.4 cm-1

between the2P1/2 and 2P3/2 states of Cl instead of the corre-
sponding splitting of 3685.5 cm-1 for Br. In addition, we used
the reduced mass of Cl-HCN (with the Cl mass of 34.96885271
u) instead of that of Br-HCN, but this did not turn out to be
important.

It is very interesting that we found, on the same potential
surfaces, that the binding energyD0 of linear Cl-NCH is 501.6
cm-1, whereas it is only 344.9 cm-1 for linear Cl-HCN. The
difference is 156.7 cm-1, whereas the difference inD0 between
Br-NCH and Br-HCN is only 3.3 cm-1. The Cl-NCH isomer
that we find most stable is indeed the one observed.

We will now explain how spin-orbit coupling can cause such
a largely different behavior. Let us look first at the plots of the
potentials for the spin-orbit coupled diabatic states discussed
in Section 4 of paper 1. One observes there that the minimum
for linear Br-HCN in the spin-orbit coupled diabatic potential
for the jA ) (3/2) state with|ωA| ) (3/2) is the same as the
minimum in the diabatic potentialV1,1 of the spin-freeΠ state.
Alternatively, the minimum for Br-NCH in the potential for
|ωA| ) (1/2) is much shallower than the corresponding minimum
in the spin-freeΣ state potentialV0,0. So, although Br-NCH
has a much deeper minimum than Br-HCN in the spin-free
case, see paper 1, the two minima become similar in depth when
spin-orbit coupling is included. The mechanism by which
spin-orbit coupling has such an important effect on the
potentials is explained in Section 4 of paper 1. It is instructive
to also compare the lowest spin-orbit adiabatic potential of
Br-HCN in Figure 5 of paper 1 with the corresponding
adiabatic potential of Cl-HCN in Figure 5, which was
computed with exactly the same spin-free potentials but with
the much smaller spin-orbit coupling parameterA of Cl.
Although for the complex of Br with HCN the two minima in
this lowest adiabatic potential are nearly equally deep, the Cl
complex gives a minimum for Cl-NCH that is deeper than the
Cl-HCN minimum by about 100 cm-1. In addition, the
isomerization barrier is much higher for the Cl complex than
for the Br complex, nearly 300 cm-1 against about 160 cm-1,
with respect to the deepest minimum. This is because
more of the spin-free stateP0 (with the deep minimum inV0,0)
remains in the lowest spin-orbit adiabatic state for Cl-HCN
than for Br-HCN because the spin-orbit coupling is less-
dominant.

Figure 5. Lowest spin-orbit adiabatic potential energy surface for Cl(2P)-HCN, obtained with the spin-free potentials of Br(2P)-HCN and the
spin-orbit coupling constant of Cl(2P). Energy (in cm-1) relative to the Cl(2P3/2) and HCN ground states.
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Another effect of the smaller spin-orbit coupling is that the
ground-state parity splitting calculated for Cl-NCH is not 4B
as in Br-NCH, but about 3B. According to the explanation of
the parity splittings in Section 3.2, this implies that the effective
electronic angular momentum,jA, for ground-state Cl-NCH is
smaller than the value for the Br-NCH complex, which was
close to the atomic value of (3/2). So, one observes that most of
the difference of 157 cm-1 in D0 between Cl-NCH and Cl-
HCN can be understood from the difference in the well depths
in the lowest spin-orbit adiabatic state. The remainder must
be a dynamical effect, related to the fact that the nuclear motion
problem must be solved with multiple coupled potential surfaces,
not just on the lowest adiabatic potential.

6. Conclusions

In the preceding paper (paper 1), we presented the full 3×
3 matrix of diabatic potential surfaces that correlate with the
2P state of the Br atom. With the use of these potentials and
the inclusion of spin-orbit coupling, we computed rovibronic
energy levels and properties of the Br(2P)-HCN complex in
full three-dimensional (3D) calculations. Dynamical variables
in the 3D model are the distanceR between Br and the center
of mass of HCN, the CH bond lengthrCH, and the angleθ
between the NCH axis and the Br-HCN axis R. The HCN
monomer was kept linear, and the CN bond length was frozen.
We also made 2D calculations in which the CH bond length
was frozen at the vibrationally averaged valuesr0 and r1 and
2+1D calculations in which the 3D potentials were averaged
over theV ) 0 andV ) 1 vibrational wave functions of the CH
stretch mode in HCN. Furthermore, we performed 2D calcula-
tions for rCH frozen at the HCN equilibrium valuere and 1D
calculations in which bothrCH and the Br-HCN distanceR
were frozen.

The complex is found to have two linear structures with nearly
equal binding energies, Br-NCH and Br-HCN. The calculated
binding energies areD0 ) 352.4 cm-1 andD0 ) 349.1 cm-1,
respectively. Both isomers were found experimentally5 in
superfluid helium clusters in a molecular beam setup. From the
infrared spectra associated with the CH stretch mode in both
isomers, it was concluded that Br-NCH has a ground state with
J ) |Ω| ) (1/2) and that Br-HCN has a ground state withJ )
|Ω| ) (3/2). This is what we found in our calculations as well.
It could be understood on the basis of the adiabatic and diabatic
potential energy surfaces of paper 1, which are qualitatively
determined by the electrostatic interaction between the quad-
rupole of the Br(2P) atom and the dipole of HCN, and the very
strong spin-orbit coupling in Br. We predicted the frequencies
of the van der Waals modes of both isomers, both forV ) 0
andV ) 1 of the CH stretch mode of HCN, and extracted a set
of spectroscopic constants from the energy levels calculated for
J ) (1/2) to (7/2). For Br-HCN with its degenerate spin-free
ground state ofΠ symmetry the bend fundamental withVb ) 1
and vibrational angular momentumωB ) (1, interacting with
the electronic2Π state withµ ) (1, produces levels with|Ω|
) (1/2) and |Ω| ) (5/2) that are split by 2.6 cm-1, a Renner-
Teller nonadiabatic coupling effect. For Br-NCH with its
nondegenerateΣ ground state, there is a small indirect Renner-
Teller splitting of 0.9 cm-1 caused by spin-orbit coupling-
inducedΣ-Π mixing. The red shift of the CH stretch frequency
in the complex, relative to free HCN, was calculated to be 1.98
cm-1 for Br-NCH and 23.11 cm-1 for Br-HCN. The experi-
mental5 values, corrected for the helium matrix shift, are 1.65
and 23.80 cm-1.

Another property that could be compared with experiment is
the splitting of the rovibronic levels ofe and f spectroscopic

parity. Relatively large first-order parity splittings were calcu-
lated and theoretically explained for the levels of Br-NCH with
bend vibration angular momentumωB ) 0. All other levels of
Br-NCH and the levels of Br-HCN have splittings that are
smaller by several orders of magnitude. The large splitting was
indeed observed in the experimental spectrum of Br-NCH,5

but it was smaller than predicted. We believe this to be an effect
of the surrounding helium cluster, which is known to also reduce
the rotational constants by a factor of nearly 3. When we
compared the calculated and measured rotational constantsB,
such a reduction was indeed found, for both Br-NCH and Br-
HCN. The reduction of the parity splitting is larger by another
factor of 2, however.

Finally, we found an explanation why for the corresponding
Cl complex only the linear Cl-NCH isomer was observed, not
the Cl-HCN isomer. We made model calculations with the
potential energy surfaces computed for the Br complex in paper
1, but with the spin-orbit coupling constantA ) 882.4 cm-1

of Cl instead ofA ) 3685.5 cm-1 for Br. The hydrogen-bonded
isomer Cl-HCN turned out to be less-stable than Cl-NCH by
nearly 160 cm-1, whereas Br-HCN is less stable than Br-
NCH by only 3.3 cm-1. A large part of this energy difference
could be understood by a comparison of the lowest spin-orbit
adiabatic potential surfaces of the Br and Cl complexes. In
addition, the isomerization barrier is much higher for the Cl
complex than for the Br complex. The same set of spin-free
adiabatic and diabatic potentials gives remarkably different
adiabatic potential surfaces when a different spin-orbit coupling
term is included.
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