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Ab Initio Treatment of the Chemical Reaction Precursor Complex Br(¢P)—HCN. 2.
Bound-State Calculations and Infrared Spectrd

1. Introduction

The series of weakly bound complexes-MY has received
an increasing amount of attention, both experiméntahnd
theoreticaP~13 especially in view of their role as reaction
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Rovibronic energy levels and properties of the?B}{-HCN complex were obtained from three-dimensional
calculations, with HCN kept linear and the CN bond frozen. All diabatic states that correlate’fstend

2Py, states of the Br atom were included and spambit coupling was taken into account. Thex33 matrix

of diabatic potential surfaces was taken from the preceding paper (paper 1). In agreement with experiment,
we found two linear isomers, BINCH and Bi-HCN. The calculated binding energies are very similBg:

= 352.4 cmt and Dy = 349.1 cm?, respectively. We established, also in agreement with experiment, that
the ground electronic state of BNCH has|Q| = (%/») and that B.-HCN has a ground state wit&| = (%/2),

where the quantum numbe®, is the projection of the total angular momentuinpf the complex on the
intermolecular axi®R. This picture can be understood as being caused by the electrostatic interaction between
the quadrupole of the BiR) atom and the dipole of HCN, combined with the very strong-spiit coupling

in Br. We predicted the frequencies of the van der Waals modes of both isomers and found a direct Renner
Teller splitting of the bend mode in BIHCN and a smaller, indirect, splitting in BINCH. The red shift of

the CH stretch frequency in the complex, relative to free HCN, was calculated to be 1.9&cBr—NCH

and 23.11 cm? for Br—HCN, in good agreement with the values measured in helium nanodroplets. Finally,
with the use of the same potential surfaces, we modeled tF®)SKICN complex and found that the
experimentally observed linear €NCH isomer is considerably more stable than the (not observed) ClI
HCN isomer. This was explained mainly as an effect of the substantially smaller it coupling in Cl,
relative to Br.

their analytic representation in a form that is convenient for
bound-state calculations. The present paper describes the
calculation of the rovibronic states and the comparison of the
results with the experimental data.

precursors in the hydrogen exchange reactioris Y — HX .
+Y, with X, Y =F, CI, Br, O, OH, CN. Because of the open- 2 Bound-State Calculations

shell configuration of the X radical in its ground state, electronic

The method that we apply to compute the rovibronic levels

degeneracies occur in these complexes, and their theoreticabf Br(2P)—HCN is described in detail in ref 14 and has been

description has to go beyond the Ber@ppenheimer ap-
proximation. One of the complexes recently studied experi-
mentally by Merritt et aP is Br(3P)—HCN. It was prepared in
liquid helium nanodroplets in a molecular beam setup and
studied by high-resolution infrared spectroscopy. This species
is particularly interesting because it was found to occur in two
isomeric forms: B+HCN and Br-NCH, both linear. In the
preceding paper, paper 1, we outlined a diabatic model that
involves the asymptotically degenerate electronic states and thei

used previously in our group to study-@HCI*%11 and CH
HF 12 It is based on earlier work for open-shell atom closed-
shell diatom complexes by Alexandeand by Dubernet and
Hutson!617 Of course, BHP)—HCN is not an atorsdiatom
complex, but for our goal the study of the structure and stability
of this complex and its infrared spectrum associated with the
CH stretch mode of HCN, it is justified to treat the HCN
jmonomer as a pseudodiatom by fixing the CN bond length and

coupling, which is suitable to compute the rovibronic levels of K€€ping the molecule linear. More details on this approximation

this open-shell complex. We also presented ab initio calculated 2@ given be_low. _ _
diabatic potential surfaces, both diagonal and off-diagonal, and  The three internal coordinates varied &ghe length of the

Jacobi vectoR pointing from the Br nucleus to the center-of-
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2. Bound-State Calculations and Infrared Spectra
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whereuag is the reduced mass of the atom = Br)-molecule
(B =HCN) complex. The atomic masses aig= 1.0078250321
u,me =12 u,my = 14.Q030740052 u, analg, = 78.9183376
u. The operatord and S and represent the orbital and spin
angular momenta of the BR) atom, respectively, with the
atomic quantum numbeds= 1 andS= (/). The operatofa
= 1 + Srepresents the total electronic angular momentum of
the Br atom, whereaf is the angular momentum associated
with the rotation of the HCN monomer, adds the total angular
momentum of the complex. We assume that the -spiibit
coupling in the Br atom is not affected by the relatively weak
interaction with the HCN molecule so that we may use the
atomic spir-orbit parameteA = —2457 cnt! as a constant in
eq 1. The 3x 3 matrix of diabatic potential¥? (Rrc,6) that
couple the diabatic states, «Owith projectiony = —1, 0, 1
on thez axis was computed and described in paper 1.

The HCN monomer Hamiltonian is

P I
Hen 2ugfen ars,, N 2A(re)

+ Vien(ren) (2

wherel(rcn) is the moment of inertia of linear HCN calculated
as a function of the CH bond length with the CN bond fixed at
the experimental equilibrium valuecy = 2.1793.18 The
reduced masgyg, associated with the CH stretch coordinate,
rcn, is defined with the mass of the H atom and the nrags

= mc + my of the pseudoatom CN. The potentMlcn(rcn)
was obtained from the accurate empirical HCN force field
determined by Carter et &.by keeping the molecule linear
and fixing the CN bond length aty = 2.179%y (the same
equilibrium value as used in the force field). In reality, the CH
stretch mode of HCN also involves some stretching of the CN
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accurate red shift. In this context, it is also worthwile to mention
that there is a debate going on about whether the CN bond can
be regarded as a spectator in the dynamics of different chemical
reactiong0-22

The basis used to diagonalize the Hamiltonian of eq 1 is the
same as that in ref 13. The radial bagig(R) consists of a
contracted set of sinc-DVR (sinc function discrete variable
representation) functions. The contraction coefficients are the
eigenvectors of a radial motion problem, solved by the sinc-
DVR method?® on a large grid, with the radial potential given
by the isotropic componerﬂzgyo(R,rCH) of the diabatic B
HCN potential Vo o(Rrcn,6), see eq 2 of paper 1, focy =
2.044@&o. This value ofrcy is one of the values on the grid
described in paper 1; it is equal to the calculated equilibrium
CH distance in HCN. To reach convergence of the radial basis
more quickly, by including the effect of continuum wave
functions, we added to this isotropic potential a term linear in
R. The slopea = 219 cnt!/ay of this term was optimized
variationally in calculations of the ground state and some low-
lying levels of the complex. A similar basign(rcy) of
contracted sinc-DVR functions was used for the CH stretch
coordinate. The basis functiogs,(rcr) arejs = 0 eigenfunc-
tions of the monomer HamiltoniaAycn in eq 2 computed by
the sinc-DVR method. Here, it is not necessary to add a linear
term because the potentid},cn(rcy) has a much deeper well
than the intermolecular potentish o(R,rcn,0).

Because the spirorbit coupling in the Br atom is very large,
it is convenient for the interpretation of the results and the
assignment of approximate quantum numbers to the eigenstates
to use the spirorbit coupled diabatic bas|gwalconstructed
in eq 4 of paper 1. The spirorbit coupling termA1 S in the
Hamiltonian is diagonal in this basis, see paper 1. The total
(electronic) atomic angular momentum of Br takes on the values
ja = () with projectionswa = %(%,) on the dimeiz axis and
ia = (32) with projectionswa = £(1/2), £(3/).

The full three-dimensional BF basis is

|nR’ nr ’ in a)Ai jB: va Q! J, MD: an (R) ¢)nr (rCH)

[2 34; 1]1/2 | jar @AY, ,,,.(6,0) Do (0B.8)* (3)

where Yj,,.5(0,0) are spherical harmonics ar[hﬁ?da,ﬁ@)*

bond. The reason that we may consider the CN bond to be rigidare symmetric rotor functions. The Euler anglas,((¢)
in the present study is that we do not wish to determine the determine the orientation of the BF frame with respect to a

absolute frequency of the CH stretch mode in-BICN, but

only the red shift of this mode caused by the interaction with
the Br atom. The following arguments are used to justify our
model. First, let us look at the results of ab initio calculations

space-fixed laboratory frame. The kéfawaldenote the spin

orbit coupled diabatic electronic states. The quantum numbers
js,wp refer to the rotation of the HCN monomer in the complex,
with wg being the projection gg on the BFz axis. The quantum

at the CCSD(T)/aug-cc-pVDZ level (for the acronyms, see paper numberQ = wa + wg is the total projection of the atomjg
1). These results, displayed in Figure 1, show that the potentialand moleculafg angular momenta on the BEaxis. All of

Vhen(ren) computed with the CN bond frozen at its equilibrium
distance practically coincides with the curve obtained by
optimizing the CN distance for every value fy. Second, in

a normal-mode analysis with the force field of Carter etl.,
the amplitude of the CN stretch component involved in the
harmonic normal coordinate of the CH stretch mode is quite
small. Third, when we compute the CH stretch frequency with
the full force field of Carter et al. and with the CN bond frozen,
the values are 3310.81 and 3199.32 ¢nvespectively. The
harmonic values are 3414.27 and 3306.17 &nThe experi-
mental CH stretch frequency in HCN is 3310.81¢&nmAlthough

the frequency changes considerably by fixing the CN bond

these are approximate quantum numbers. Exact quantum
numbers are the total angular momentum of the comgleiis
projection,M, on the space-fixedaxis, and the parityp, under
inversion. In the actual calculations, we used a parity-adapted
basis, cf. eq 6 of ref 13. The spectroscopic parity is defined by
€ = p(—1)’~S. States withe = 1 ande = —1 are labelea: and

f, respectively.

In addition to the three-dimensional (3D) calculations, we
made one-dimensional (1D) and two-dimensional (2D and
2+1D) calculations. The 1D calculations were made for fixed
R values ranging from 6 to B3 and rcy frozen at the
experimental CH equilibrium distance 2.01&H The functions

length (the relative change is only 3% though), we believe that |ngCJand |n,Owere left out of the basis, and the radial kinetic

the model with CN frozen is sufficiently good to get a fairly

energy terms were omitted. The HCN rotational constant in these
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Figure 1. Energy of HCN as function of the CH bond length with the CN bond length frozen or optimized. Notice that the two energy curves
coincide. The scale on the left-hand side is the CN bond length.

calculations wasy = 1.47822 cm™.1? In the 2D calculations, 14 andn™ = 4. Here, the ground level changed by less than
we fixed rcy at the equilibrium value of 2.013& or at the 103 cm ! and the somewhat higher levels by less than?10

vibrationally averaged values of = 2.0409%, for » = 0 and cm~1 if the truncation parameters are increased by 1. Energy
r. = 2.0990@ for » = 1, and omitted the basig;[Jand the differences, such as vibrational and rotational excitation energies,
corresponding radial kinetic energy term. Withy = 2.013% are converged significantly better, however.

and 2.04098,, we used the HCN rotational constaBf = ) _
1.47822 cm; with rey = 2.0990@y, we usedB; = 1.46774 3. Results and Discussion

cmL In the 2+1D calculations, we first averaged the full three- 3.1. Rovibronic Levels from 1D Calculations. The 1D

dimensional potentials over the CH stretch coordimatewith calculations with fixedR and the CH distance frozen at the
the v = 0 or» = 1 CH stretch functions of HCN. Next, we  experimental equilibrium value of 2.01&Bwere made for parity
performed two-dimensional calculations with the= 0 or e and total angular momentuin= (Y,) andJ = (%/,). Figure 2

v = 1 averaged potentials and the correspondingly averagedshows the calculated energy levels as functiorR iofthe range
rotational constant®, = 1.478474 cm' and By = 1.46535  from R = 6 to 16 These curves correspond to the so-called
cm* of HCN. One may observe that the latter valuesBof adiabatic bender model of refs 24 and 25, which is extended
differ slightly from the experimental values used in the 1D and  here to include multiple coupled electronic states. To understand
2D calculations. The reason is that out-ZD values were  the pehavior of these curves, it is useful to know tatthe
computed with the CN bond length fixed at the equilibrium  prgjection of the total angular momentuhon the dimerz axis,
distance. The 21D model is equivalent to a full 3D calculation g g nearly good quantum number. When the curves with

with the basign,Orestricted to a single function with eithay (4») and J = (3) nearly coincide, this implies that the

= 0 orn: = 1 because the basjis;[iconsists of eigenfunctions  corresponding levels hav€| = (4,). The energy difference

of the monomer Hamiltoniakincn. between the curves with = (3/,) andJ = (%/») involves only
The 3D calculations were limited td = (%) and /), the overall rotation of the complex in that case. Wheh =

whereas in the 21D model we computed the rovibronic states (l) curve is well-separated from the = (1) curves, this

for 3 = (*2), (%2), (/). and (/). In all calculations we jmplies that|Q| = (3,). Using this rule, we see that the deepest
performed a full diagonalization of the Hamiltonian matrix in  minimum atR = 7.33, corresponds to a level witlR| = (1),

the given parity-adapted basis. In 3D calculations, the lower \hereas the second minimum Rt= 8.7a, corresponds to a
levels of the complex correspond to= 0 of the CH stretch level with |Q| = (3,). Looking at the potential surfaces in
mode; states that correspondo= 1 of the CH stretch are  Figyres 4 and 5 of paper 1, one may guess that these two minima
much higher in energy and were identified among the highly correspond to linear BiNCH and linear BF-HCN, respectively.
excited intermolecular modes by a population analysis of the The |atter has a much larger equilibrium distarRe,than the
eigenstates. In the 2D calculations, we truncated the basis afrst one, but it seems to be about equally stable. One also
ng =17 andjg~* = 17. In the 2+1D model, we truncated at  observes a series of higher curves with minima at more or less
ng>= 16 andjg™*= 16. In convergence studies, we found that the same distanceR, These correspond to a series of excited
an increase of each of these truncation parameters by 1, both invibronic levels of either BFNCH or or Br—HCN with |Q|

2D and 2+1D, changed the ground state energy by less than values that are sometimes different from their ground-state
105 cm™! and the somewhat higher levels by less than*10 |evels. These excited levels are combinations of bend excited
cm~L. In the full 3D model, we truncated af™ = 14, j5* = states withwg = 0 and the electronic states withh = +(%/2)
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Figure 2. Rovibronic levels from 1D calculations witR andrcy = re fixed, as functions oR. Closed lines correspond tb= (*/;), and dashed

lines correspond td = (/).

and=+(%/,). Their|Q| values follow directly from these quantum
numbers becaus® = wa + wp. The ground state hasg = 0

and, henceQ2 = wa. Asymptotically, these levels correlate with
the fourfold degeneratéPs, ground state of the Br atom and

energies of B-NCH and Br-HCN differ by as little as 3.3
cm! (in the 3D model).

Tables 2 and 3 show the rovibronic levels ofBYCH and
Br—HCN, respectively, for thes = 0 ground state of the CH

the ground and excited rotational levels of HCN. The results stretch mode, total angular momentuh= (1) to (7/), and
from the 2D and 3D calculations discussed below provide more spectroscopic paritg. ForJ = (Y/,) and /), we also included

detalils.

3.2. Rovibronic Levels from 2D and 3D Calculations.
Before we discuss the results of the 2D+1D, and 3D

the full 3D results in these tables. In accordance with the
spectroscopic conventiéhfor linear open-shell molecules, we
labeled the levels with the term symbd&Kp. The vibronic

calculations, let us mention that the rovibronic wave functions quantum numbeK corresponds to the sum of the electronic
(discussed below) clearly show that all states up to an energyorbital angular momentum usually denoted By and the
of about 106 cm! above the ground level are localized either vibrational angular momentum of the bend mode commonly

near the linear BrNCH geometry @ = 0°) or near the linear
Br—HCN geometry @ = 18C°). Some of the higher excited

labeled byl. In our treatment, which includes the full range of
anglesf, the relevant electronic angular momentum quantum

levels below this limit show large-amplitude bend motions, but number isu, with the valuex = 0 for the X ground state of

it is quite obvious that they belong to either-BXCH or Br—

linear B—NCH and the valueg = +1 for theIl ground state

HCN. Hence, we will discuss the properties of each of these of linear B—HCN. The vibrational angular momenturh,is

isomers.
The binding energieBy of Br—NCH and Br-HCN computed

given bywsg. Hence, the quantum numbd, is given byK =
u + wg, which can also be written 46 = Q — X = wa + ws

with the different models are listed in Table 1. Clearly, the — =, whereX = +(%,) is the component of the spiBon the

binding energy of B-rNCH depends only slightly on the model
and on the CH stretch mode being excited or not, whebkas

intermoleculaz axis,R. The quantum number that is commonly
denoted byP corresponds t¢€2| in our case. The ground state

of Br—HCN is much more sensitive. This can be understood of Br—NCH with |Q] = (1/,) corresponds t& = 0 and can be

from the result in paper 1 that tHe. and Re values of Br-

written in the spectroscopic notatinas 2%(1/2. The ground

HCN depend more strongly on the length of the CH bond than state of B-HCN with |Q2] = (/7)) has|K| = 1 and can be

the De and Re values of BFNCH. This, again, is reasonable

written aSZH(g/z). BecauséQ| is a nearly good quantum number,

because the CH bond is in direct contact with the Br atom in the energy levels in these tables are sorted according to their

linear B—HCN, whereas it is on the other side in linear-Br

|Q| values. The rows of levels with the san§&| and increasing

NCH. The 2+1D model with the 3D potentials averaged over values ofJ >|Q| are end-over-end rotational progressions of

the v = 0 or v = 1 wave functions of the CH stretch mode is
much closer to the full 3D results than the 2D model with
fixed atrg or r1. A similar conclusion was drawn for EHF 13

the same internal state of the complex. Actually, the levels of
Br—NCH and Br-HCN originate from a single calculation for
each value ofl. We could clearly assign the levels to either

Another conclusion, which is quite striking, is that the binding Br—NCH or Br—HCN on the basis of the electronic angular
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Figure 3. Density distributions corresponding to the -BYCH

conformation from the 21D model forucy = 0. They are obtained Figure 4. Density distributions corresponding to the -BHiCN

by integration of the squared absolute wave functions over the electronic conformation from the 21D model forucy = 0. For details, see the
coordinates and over all rotation angles/,¢) of the complex. The caption of Figure 3. The energies and quantum numbers correspond to
energies and quantum numbers correspond to those in Table 2. those in Table 3.
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TABLE 1: Binding Energies Dy (parity €) and Red Shifts of
the CH Stretch Frequency Relative to Free HCN (in cn?)

Br—NCH (J = () Br—HCN (J = (3/2))

model  vcy=0 vcy=1 redshift ycy=0 vcy=1 red shift
2D (re) 351.78 339.52
2D 352.54 354.16 1.62 345.66 359.29 13.63
2+1D 352.36 354.33 1.97 348.68 371.52 22.84
3D 352.37 354.35 1.98 349.11 372.22 23.11
experimenit 1.65 26.59/23.80

aThe latter value is corrected for the He matrix shift, see the text.

momentum projectionwa|, which turns out to be'() for the
ground state of BENCH and §/,) for the ground state of Br
HCN. Also, on the basis of the rovibronic wave functions being

J. Phys. Chem. A, Vol. 111, No. 31, 2007275

steps of 2 was very helpful. The upper panel in Figure 3 is
clearly the ground rovibronic state of BNCH, the middle
panel is the bend fundamental, and the lower panel is the bend
overtone mixed with the stretch fundamental in a Fermi
resonance. In Figure 4, the upper panel is the ground rovibronic
state of B-HCN, the middle panel is the bend fundamental of
that complex, and the lower panel is the pure stretch fundamental
in this case.

In Table 2, one reads that the ground state of B€CH with
approximate quantum numbeisg = v, = vs = 0 and energy
E = —352.37 cmi! occurs ford = |Q| = (Y/,) and is dominated
by the diabatic state witha = (/) and |wa| = (/2). The
fundamental bend frequency of BNCH is 23.0 or 23.9 cmt,
depending on whether one considers [R¢ = (3/,) or the |Q|

localized near either one the linear equilibrium geometries we = (1/,) bend excited level. The density distribution in the middle
could make such a distinction. Examples are shown in Figure panel of Figure 3 corresponds to the latter level, but the

3 for Br—NCH and Figure 4 for BFrHCN. Actually, we did

distribution of the former state (not shown) is almost indistin-

not plot the wave functions in these figures but rather the density guishable. The only difference between these states is that the
distributions obtained by taking the absolute square of the wave electronic angular momentum, = 4(%/,) is coupled parallel
function and integrating over the electronic coordinates and the or antiparallel to the bend angular momentumg = =+1.

overall rotation angles.

Because the spin-free ground state of-BICH is aX state,

The density distributions as shown in Figures 3 and 4 can see paper 1, the value aiy = 3(%,) is purely determined by

also be used to assign the vibrational quantum numieaad

vp Of the complex. The quantum numbeyrefers to the B+
HCN or Br—NCH stretch mode in the coordind&ethe quantum
numbery, refers to the bend mode of the linear complexes.
The quantum numbeug is the vibrational angular momentum

the projection of the spiB= (1/,) on the dimer axis. The orbital
angular momentum vanishes fokastate, there is only a small
indirect RennetTeller coupling, and the two bend frequencies
are very nearly the same. In Section 3.4, we will discuss this in
more detail. The modes at 39.7 and 51.5 ¢rare the bend

of the bend mode. This quantum number and the electronic overtone and the stretch fundamental, but according to the

angular momentum projectioma, occur in the diabatic basis

density distributions these are mixed into a Fermi resonance.

used. In the complex, they are approximate quantum numbersin Table 3, one can see that the ground state ofHBEN has
and were obtained by a population analysis of the eigenstates.J = |Q| = (%/,) and energye = —349.11 cm™. It is dominated

When the values ofva and wg are given in the tables, this

by the diabatic state witja = |wa] = (%>). The bend

implies that the eigenstates have more than 50% (in most casesundamental frequency, 38.7 cf of Br—HCN is considerably
much more) of this character. In the assignment of the bend higher than that for BrNCH. This value is derived from the

quantum numberpy, the rule thatwg runs from—uy to v, by

bend excited level withQ| = (%5,); the bend excited level with

TABLE 2: Lowest Bound States ofe Parity of Br —NCH (@ = 0°) from the 2+1D Model with vcy = 02

term |a)/.\| ‘(UBl Up Us J= (1/2) J= (3/2) J= (5/2) J= (7/2)
Q| = ()
) 0.5 0 0 0  —352.3609 €352.3701)  —352.3044 €352.3136) —352.1428  —351.8762
Al 0.5 1 1 0  —328.4749 £328.4850) —328.2843 £328.2945)  —327.9690 —327.5328
25 0.5 0 2 0 —312.7127 €312.7229)  —312.6530 £312.6632) —312.4857  —312.2108
25 0.5 0 0 1 —300.9041 £300.9133)  —300.8471 £300.8564) —300.6863  —300.4217
M 0.5 1 3 0  —291.3396 €291.3506)  —291.1451 €291.1562)  —290.8230  —290.3774
Al 0.5 1 1 1 —276.3575 €276.3672) —276.1714 £276.1812) —275.8630 —275.4356
2San) 0.5 0 4 0  —274.7948 €274.8064)  —274.7317 €274.7433)  —274.5584  —274.2751
25 0.5 0 0 2 —264.3586 £264.3680) —264.2987 £264.3081) —264.1335 —263.8630
M) 0.5 1 5 0  —254.8922 £254.9048) —254.6932 £254.7058) —254.3637  —253.9075
25 42) 0.5 0 2 1 —253.0965 £253.1052) —253.0373 £253.0461) —252.8747 —252.6084
Q| = ()
[ (312 0.5 1 1 0 —329.2981 £329.3082) —329.0794 —328.7670
2A@i) 0.5 2 2 0 —304.6535 £304.6649) —304.3525  —303.9325
Tz 0.5 1 3 0 —292.1430 €292.1540)  —291.9203  —291.6022
M) 0.5 1 1 1 —277.2085 €277.2182)  —276.9904 —276.6798
A 0.5 2 4 0 —268.6951 £268.7074) —268.3888  —267.9614
(a1 0.5 1 5 0 —255.7079 €255.7169) —255.4971  —255.1776
A 0.5 2 2 1 —253.7150 £253.7256) —253.4211  —253.0107
Q| = (%)
2As12) 0.5 2 2 0 —306.2819  —305.9371
2P 512 0.5 3 3 0 —280.1198 —279.7050
2A) 0.5 2 4 0 —270.3068  —269.9553
2A(s12) 0.5 2 —255.4390  —255.0877
1Q = (/)
2D 71 0.5 3 3 0 —282.5384

aEnergies in cm! relative to the energy of BriPs;z) and HCNgcy = 0). The numbers in parentheses are from 3D calculations. Quantum
numbersys and v, refer to the intermolecular stretch and bend. The approximate quantum numbarsl wg and the term symbdPtiK g are

explained in the text.
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TABLE 3: Lowest Bound States ofe Parity of Br —HCN (6 = 180°) from the 2+1D Model with vcy = 02

term |wal lwsl b Us J= () J= () J= (%) J= (1)
1Q| = ()
22112 1.5 1 1 0 —310.2585 £310.5624) —310.1421 £310.4459) —309.9472 —309.6737
[0 1.5 2 2 0 —274.4774 £274.6776) —274.3567 £274.5568) —274.1554 —273.8737
@)
2212 1.5 1 1 1 —269.7106 £269.8983) —269.5947 £269.7823) —269.4000 —269.1266
1 = (%)
21—1(3/2) 1.5 0 0 0 —348.6834 £349.1115) —348.4911 —348.2218
Tz 1.5 0 0 1 —303.5335 £303.7839) —303.3443 —303.0795
[T (32 1.5 0 2 0 —276.2600 £276.2378) —276.0613 —275.7832
@)
Tz 1.5 0 0 2 —258.4154 £255.9429) —258.2300 —257.9705
1Q| = (%)
2A i) 15 1 1 0 —307.3673 —307.0928
2A(s/z) 1.5 1 1 1 —266.9047 —266.6289
12| = (")
2B 15 2 2 0 —268.8726

aEnergies in cmt relative to the energy of BPPs;z) and HCN ¢cy = 0). The numbers in parentheses are from 3D calculations.

of the symbols, see Table 2.

TABLE 4: Bend and Stretch Frequencies (in cnt?) of
Br—NCH and Br—HCN for vcy = 0 and 1
Br—NCH Br—HCN

transition transition

veh=0 vch=1 ¥i=0 vech=1

fundamental bend frequency

22(1/2) - Zn(l/z) 23.9 23.7 21_[(3/2) - 22(1/2) 38.5 43.4

22(1/2) e 2H(3/2) 23.0 22.9 2H(3/2) e 2A(5/2) 41.1 46.2
fundamental stretch frequency

22(1/2) - 22(1/2) 515 51.4 2H(3/2) - 2H(3/2) 45.1 47.6

|Q| = (%) gives a bend fundamental frequency of 41.1°ém
As will be discussed in Section 3.4, this difference can be
explained by the RennefTeller nonadiabatic coupling of the
bend mode to the electronic angular momentuwng, of the IT
ground state of BrHCN. The stretch fundamental frequency
of Br—HCN is 45.3 cm?, not much different from BrNCH.

From these tables, one can also read the frequencies of the ben

overtone withy, = 2, which has two components, one wibig
= 0 and one with|jwg] = 2. The differences between the
frequencies of these components are about 2lcthey are

caused by the anharmocity of the bending potentials. Also,
bend-stretch combination levels and overtones can be observed.

We already mentioned that in BNCH the bend overtone and
stretch fundamental mix into a Fermi resonance. Similar

For an explanation

splittingsEs — E. are by far the largest for th€| = (%/5) levels

with wg = 0 in Br—NCH and they increase linearly with+

(M,). This simple linear dependence d#- (Y/5) is well-known

for A doubling in linear molecule¥, and it was also found in
CI(?P)—HCIt0.11.17and CIEP)—HF .22 The parity-splitting char-
acteristics can be understood by considering the Hamiltonian
in eq 1 and the basis in eq 3. The energy difference between
functions withe andf parity is caused by a coupling between
the basis components with{, wg, Q) and wa, —wg, —£2).

The term in the Hamiltonian that is responsible for this coupling
is the Coriolis coupling operator2(a + jg)*J/(2ussR?) and,

in particular, the step-up and step-down terms \/I/Itﬁﬁ and

J‘;f]‘ in this operator. The step-up and step-down operators
Iéji cannot directly couple basis functions withy and —wg
because this quantum number has integer values and the step-
up and step-down operators shifg only by +£1. The terms
ffJ+/(2uasR?) couple basis functions with wfa,ws,Q) =
((*2),0,(2)), and (Y2),0, —(%2)). The coupling matrix ele-
ments are

[(Jala +1) = wplwa £1))(0+ 1) —
QAR = DI RupeR 0 14+ 53+ 5 TRrae R 'O
@)

resonances occur between the second and third bend overtone
and the corresponding modes with two bend quanta replacedand they cause a first-order splitting between the levels of

by one stretch quantum.

Looking back at the “adiabatic bender” curves from the 1D
calculations in Figure 2, we may now conclude that the
minimum atR = 7.3 in the lowest two nearly coinciding
curves with|Q| = (1/,) indeed correspond to linear BNCH.
The minimum aR = 8.7ag in the lowest curve witll = |Q| =
(3/,) represents linear BrHCN.

The results calculated with the CH stretch mode excited to
= 1 are qualitatively similar to those obtained for= 0.
Therefore, we do not show all of the levels. In Table 1, one

andf parity, which would otherwise be degenerate. Equation 4
shows that this splitting should indeed be proportional to

(M,) with a proportionality constant that isj2(+ (/) times

the expectation value of [AgR? ! over the radial part of the
wavefunction. Because of the very large spatbit splitting
between theéPy,, and?P;, states of the Br atom, the quantum
numberja is nearly ¢/) in the lower levels of the complex.
The expectation valug2uasR?~10is the end-over-end rota-
tional constanB. Hence, the splitting should be abol&(d +
(M2)), with B = 0.0525 cnt? for Br—NCH (see below). This is

could see already that the complex becomes more stronglyindeed what we see in Table 5 for the levels with = 0 and
bound when the CH stretch mode is excited and that this effect |Q| = (}/2) of Br—NCH becausgwa| = (}2) in this isomer.

is much more important for BFHCN than for B—NCH. The

Functions withwg = +1 are only coupled indirectly through

bend and stretch fundamental frequencies of both complexesfunctions withwg = 0 and show a small parity splitting. For

are listed in Table 4. One notices there that in-BiCN the
bend and stretch frequencies are also highepferl than for
v = 0. In Br—NCH, there are hardly any differences between
v=0andv = 1.

Table 5 for BNCH and Table 6 for BFHCN contain the
parity splittings between the levels efandf symmetry. The

Q| = (%), the splittings are even smaller and they are
proportional to § — (12))(d + (M2))(J + (3/2)) as pointed out
by Dubernet and Hutsofi.They are due to a higher-order effect
of the Coriolis coupling operatcjﬁji/(ZMABRz). In Br—HCN,
which haslwa| = (%/2), the splitting is smaller by several orders
of magnitude than in BrNCH and is proportional td + (1/),
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TABLE 5: Parity Splittings AE = E; — E¢in cm™! of Br—NCH (0 = 0°) for vcy = 0
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|wal |ws| b s J= (") J= (%) J= () J=("h)

19| = (2)
0.5 0 0 0 0.2022 (0.2022) 0.4043 (0.4043) 0.6064 0.8085
0.5 1 1 0 0.0045 (0.0045) 0.0084 (0.0084) 0.0113 0.0132
0.5 0 2 0 0.2032 (0.2033) 0.4065 (0.4065) 0.6097 0.8128
0.5 0 0 1 0.1977 (0.1977) 0.3954 (0.3954) 0.5931 0.7908
0.5 1 3 0 0.0055 (0.0055) 0.0100 (0.0101) 0.0130 0.0143
0.5 1 1 1 0.0042 (0.0042) 0.0076 (0.0076) 0.0099 0.0109
0.5 0 4 0 0.2043 (0.2043) 0.4085 (0.4085) 0.6127 0.8168
0.5 0 0 2 0.1961 (0.1961) 0.3921 (0.3921) 0.5881 0.7841
0.5 1 5 0 0.0040 (0.0040) 0.0065 (0.0066) 0.0068 0.0046
0.5 0 2 1 0.1921 (0.1921) 0.3842 (0.3842) 0.5762 0.7681

Q2| = (%2)
0.5 1 1 0 0.0006 (0.0006) 0.0022 0.0048
0.5 2 2 0 0.0000 (0.0000) 0.0000 0.0000
0.5 1 3 0 0.0010 (0.0010) 0.0035 0.0078
0.5 1 1 1 0.0007 (0.0007) 0.0027 0.0059
0.5 2 4 0 0.0000 (0.0000) 0.0000 0.0000
0.5 1 5 0 0.0014 (0.0014) 0.0033 0.0075
0.5 2 2 1 0.0000 (0.0000) 0.0001 0.0002

TABLE 6: Parity Splittings AE = E; — E.in cm~! of Br—HCN (6 = 18C) for vcy = 0?

lwal |wg| Vb Us J= (") J= (%) J= () J= (")

1Q| = ()
15 1 1 0 0.0027 (0.0027) 0.0054 (0.0054) 0.0082 0.0109
15 2 2 0 0.0000 {0.0001) 0.0000 €0.0001) —0.0001 —0.0001
15 1 1 1 0.0047 (0.0046) 0.0093 (0.0093) 0.0140 0.0186

aFor|Q| = (%), all splittings are less than TOcm™.

TABLE 7: Spectroscopic Parameters (in cmt) from the
2+1D Model

Br—NCH (6 = 0°)

Br—HCN (¢ = 180°)

ven=20 veh=1 ven=20 ven=1
intermolecular stretch
Ee —383.58 —385.53 —371.27 —395.51
We 66.36 66.33 45.18 48.11
WeXe 7.46 7.45 0.016 0.26
rotational constants

Eo —352.29 —354.25 —348.74 —371.58
B 0.05253 0.05254 0.03847 0.03846
D 3.8107 25107 24107 24107

see Table 6. The splittings are only shown #c+ 0 of the CH
stretch mode; the results for= 1 are very similar.

3.3. Spectroscopic ParameterOnly short stretch progres-
sions withus < 2 can be seen in Table 2 for BNCH and
Table 3 for BHCN. When we fitted these to the usual
anharmonic oscillator formula, as we did for-&F 13 we found
the harmonic stretch frequenciesand anharmonicity constants
weXe given in Table 7. For BFNCH, the stretch mode shows

complex. This effect is probably reduced because of two
opposing phenomena. When the CH stretch is excited the
complex becomes more strongly bound, which tends to decrease
the value of the equilibrium distanci,. Alternatively, the CH
group becomes longer when it is excited, which will increase
Re through the repulsive interaction. This argument holds in
particular for B—HCN, but for B—NCH the effect of the CH
stretch is very small anyway.

From the energy difference between the lowest levels
corresponding te = 0 andv = 1 for the CH stretch mode, we
extracted the red shift of the CH stretch frequency in the
complex, relative to free HCN. The results of different models
are included in Table 1. It is quite natural that the shift is much
larger (23.11 cm?) for Br—HCN than for B.-NCH (1.98 cn1?)
because of the direct neighborhood of the Br atom to the CH
group.

3.4. Renner-Teller Coupling. Linear Br—HCN is a typical
Renner-Teller syster® of case 1(a¥? because (in the absence
of spin—orbit coupling) it has a twofold degenerate electronic
ground state ofl symmetry. When the complex bends tHe
state splits into on&’ and oneA” state with an energy difference

a Iarge anharmonicity. This is an effect of the Fermi resonance that is nearly quadratic in the bend angle, see paper 1. The

with the bend overtone that we already observed. RIBEN,
the anharmonicity is very small.

From the series of levels calculated fb (Y/5) to (7/2) with
the 2+1D model, we computed rotational constars,and
distortion constantd), by a fit to the linear molecule expression

EQ)=E,+BJJ+1)— Q% -DE+1)-Q% (5

ground state of BEHCN with |Q| = (%/,) is written in Rennet
Teller notatio® as?5t1Kp = 2[1(32). The same term symbol
holds for the accompanying intermolecular stretch progression
with vs ranging from 0 to 2. Most interesting are the bend excited
states withy, = 1 and vibrational angular momentuwy =

+1. They give rise to a bend fundamental wi| = (%)
denoted by?X1/2) and a bend fundamental witlf2| = (%)
denoted b)?A(g,/z). Both of these bend modes are indeed found,

This formula was applied after averaging the energies over thesee Tables 3 and 4, as well as the accompanying-bstnetch

levels of paritiese andf. The results for the ground state of

combination levels. The fundamental bend frequency for the

each isomer are given in Table 7. One observes in this table?X2) levels is 38.7 cm!, and for the?As 2 levels it is 41.1

that the rotational constants of BNCH and BF—HCN are quite

cmL. For the levels that correspondden = 1, the?S ) bend

different. One also observes that excitation of the CH stretch frequency is 43.4 cmt and the?As/2) bend frequency is 46.2
mode has only a small effect on the rotational constant of the cm™. These numbers are from theé-2D calculations because
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the 3D results are not available f(®| = (°/,). The value for of He nanodroplets. It was found, in agreement with our results,
the 22 levels from 3D calculations is not very different, that the ground state of BINCH has|Q| = (%) and the ground
however. state of BEHCN has|Q| = (3/,). For B—NCH, a red shift of
We may compare our set of levels to the energy-level diagram 1.65 cn? of the CH stretch frequency was observed, whereas
of a2I1 triatomic linear molecule shown in Herzberg's bd8k,  for Br—HCN the red shift is 25.59 cm. Before we compare
Figure 8 of Section 1.2. This diagram correlates the energy levels with the shifts calculated for the complex in the gas phase, we
obtained from a full calculation with the levels obtained when should correct the experimental values for a possible matrix
either the RennerTeller interaction or the spinorbit coupling shift induced by the He clusters. A comparison of the shifts
are set to zero. Herzberg's “full” treatment includes the bending observed for several hydrogen-bonded complexes in the gas
mode only, and it defines the Renndlreller interaction phase and in helium has shot¥ihat there is indeed such a
parametere, as the ratio of the harmonic force constants of the matrix effect and an empirical correction formula was pro-
coupling or difference potential; -1 = [V(A") — V1(A))/2 at posed: A = 1.822 + 0.0365% cm™1° where A is the
the linear geometry and the diagonal or sum potendal,2= correction that should be subtracted to obtain the gas-phase
V1(A) + V(A"). Note that the bend quantum numbay;,in our value of the red shift anX is the measured red shift in
notation is denoted as, in Herzberg's figure. In Herzberg’'s  helium. We used this correction for BHCN, where the
figure, the levels of the sam&| with the largerP are higher red shift is quite large. The shift after correction is 23.80
than the levels with smalle?, whereas in our case the levels cm™, close to our computed value of 23.11 cth{see Table
with the largerP are lower. The reason for this reversed order 1). The correction formula was only derived for HX stretch
is that our spir-orbit constantA, has a negative value, whereas frequencies in hydrogen-bonded complexes where HX is the
Herzberg’s is positive. In that sense, theBtCN results may donor, so the H atom is bound directly to the acceptor, and it
be compared with the level patterns of some other Reaner cannot be applied to BINCH. Moreover, the shift found for
Teller systems, GtHF'3 and He-HF" ¥ calculated in our group  Br—NCH is so small that the correction would give a negative

earlier. However, the absolute value of 2457¢mf the spin- shift and we omitted it in this case. The value of 1.987€m
orbit parameterA, in the Br atom is so large that the upper obtained from ab initio calculations with the full 3D model is
levels of the spir-orbit doublets in BF-HCN (such as thélT in good agreement with the uncorrected experimental value of
level that is spir-orbit excited from the groundlls) level) 1.65 cnt,

are not bound anymore. Otherwise, the levels from our calcula- The ab initio-computed rotational constants of BfCH and
tions follow the pattern of the levels in Herzberg’s picture of a Br—HCN are B = 0.0525 cm?! and B = 0.0385 cnt?,
typical RennerTeller system. respectively. The experimental values 8re= 0.019 cntt and
The splitting of 2.6 cm? between théX (12 and?A sz levels B = 0.0151 cm’.5 The measured values are smaller than the
that correspond to the samg= 1 bend fundamental is caused computed ones by factors of 2.8 and 2.5, respectively. These
by the RennerTeller interaction (parametrized in Herzberg's factors are in good agreement with literature values for various
treatment bye), which in our case is represented by the off- molecules in superfluid helium dropletsThey are caused by
diagonal diabatic potential; —;. This splitting is considerably ~ some of the surrounding helium atoms following the rotation of
smaller than the splitting of 38.6 cthfound for C-HF.13 But the molecule and, thus, increasing its effective moments of inertia.
the bend frequency of BfHCN is also much lower than that In our calculations on BFNCH, we predicted large parity
for CI—HF, and the spirrorbit coupling is much stronger. In  splittings of the levels witlwg = 0, see Table 5. For the ground
the work on He-HF" 20 it was shown that this splitting does state of B-NCH with |Q| = (}/2), we predicted a splitting of
not disappear even when the coupling potenfial; is switched 0.2022 cm* for J = (%), which is about 8 = 0.210 cn1l.
off. This is a fundamental deviation from Herzberg’'s model, Such a splitting of aboutBlthat increases linearly witQ +
which was shown in ref 30 to be due to the fact that the bending (%/2) could be very-well rationalized by the theory in Section
motion is treated in our work as a hindered rotation rather than 3.2, see eq 4. The simulation of the measured spectrum
a harmonic vibration as in Renner’s work. in ref 5 gave a much smaller parity splitting. Taking into
Linear Br—NCH is not a RennerTeller system because (in  consideration the reduction & by a factor of nearly 3 by
the absence of spiorbit coupling) it has a nondegenerate the surrounding helium atoms, the experimental splitting is
electronic ground state & symmetry. The spirrorbit coupling about B. This would imply, according to our theory for
in the Br atom is very strong, however, and we discussed alreadythis splitting in Section 3.2, that the quantum numiaer (%/2)
in Section 4 of paper 1 that in the ground state of linear Br in eq 4 must be replaced b§ = (}/). In other words, only

NCH with approximate quantum numbgis= (%) and |wa| the spin is involved in the off-diagonal Coriolis coupling
= (Y,) the wave function ha¥; of IT character. Hence, itis  with the overall rotation of the complex, not the electronic
interesting to look for effects similar to those of Renné&eller orbital angular momentum. If this holds, and we fail to see any

coupling. We saw already in Section 3.2 that the fundamental other explanation for the discrepancy between theory and
bend frequency of BrNCH is 23.0 or 23.9 cm!, depending experiment, then this must be an effect of the liquid-helium
on whether one considers th@| = (%/,) or |Q| = (%) bend matrix.

excited state. The density distributions of these states are The (side-)bands associated with the bend and stretch modes
very similar. The only difference between them is that the of the complex have not been observed yet. Therefore, we
electronic angular momentuma = £(%>) is coupled parallel cannot compare our calculated results with experiment for these

or antiparallel to the bend angular momenta = +1. So, modes. It will be interesting to try and measure such modes.
there is a small indirect Rennefeller splitting of 0.9 cm? in
this case. 5. Model Study of CI-HCN, Role of Spin—Orbit

Coupling

4. Comparison with Experiment . . .
P P Also, the linear C+NCH complex was observed in a helium-

Experimentally? both linear isomers, BfNCH and Br droplet experiment by Merritt et &l.put not the hydrogen-
HCN, have been observed spectroscopically in a molecular beambonded C-FHCN complex. To understand why both isomers
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Figure 5. Lowest spin-orbit adiabatic potential energy surface for Bl

HCN, obtained with the spin-free potentials of Btf-HCN and the

spin—orbhit coupling constant of CIP). Energy (in cm?) relative to the CRPs2) and HCN ground states.

were found for the complex of Br with HCN, and only a single
one for the Cl complex, we made some exploratory calculations
of the adiabatic potential surfaces for-GHCN. The potentials
turned out to be qualitatively similar to those ofBACN. Even
quantitatively, the differences are not very large. We found, for

We will now explain how spir-orbit coupling can cause such
a largely different behavior. Let us look first at the plots of the
potentials for the spirorbit coupled diabatic states discussed
in Section 4 of paper 1. One observes there that the minimum
for linear Br—HCN in the spin-orbit coupled diabatic potential

example, with the same RCCSD(T) method and the same basidor the ja = (%/,) state with|wa| = (%) is the same as the

as that used for BrHCN that the value oDe for the global
X—NCH minimum in the lowest adiabatic potential is 726¢m

for X = Cl, whereas it was 800 cm for X = Br. The local
minimum for the linear X*HCN structure corresponds .
=359 cnm* for X = Cl and 415 cm? for X = Br. We realized,
because the effect of spiorbit coupling on the relative stability

of the two isomers was so important for-BACN, see Section

4 of paper 1, that perhaps the differences between the ClI
complex and the Br complex are caused mainly by the fact that
the spin-orbit coupling is much smaller in Cl than in Br. To
investigate this hypothesis, we madeID bound state calcula-
tions for the C-HCN complex with the same potential surfaces
as those used in our BHCN calculations. The only difference

is that we introduced the spirorbit splitting of 882.4 cm?
between the’P;, and 2P, states of Cl instead of the corre-
sponding splitting of 3685.5 cm for Br. In addition, we used
the reduced mass of EHCN (with the Cl mass of 34.96885271

u) instead of that of BFHCN, but this did not turn out to be
important.

It is very interesting that we found, on the same potential
surfaces, that the binding enerBy of linear C-=NCH is 501.6
cm™1, whereas it is only 344.9 crd for linear CHHCN. The
difference is 156.7 crt, whereas the difference Do between
Br—NCH and B—HCN is only 3.3 cnT'. The C-NCH isomer
that we find most stable is indeed the one observed.

minimum in the diabatic potentid; ; of the spin-fred] state.
Alternatively, the minimum for BFNCH in the potential for
|wa| = (M2) is much shallower than the corresponding minimum
in the spin-freeX state potentiaVyo. So, although BFNCH

has a much deeper minimum than-B4CN in the spin-free
case, see paper 1, the two minima become similar in depth when
spin—orbit coupling is included. The mechanism by which
spin—orbit coupling has such an important effect on the
potentials is explained in Section 4 of paper 1. It is instructive
to also compare the lowest spinrbit adiabatic potential of
Br—HCN in Figure 5 of paper 1 with the corresponding
adiabatic potential of CtHCN in Figure 5, which was
computed with exactly the same spin-free potentials but with
the much smaller spinorbit coupling parameteA of Cl.
Although for the complex of Br with HCN the two minima in
this lowest adiabatic potential are nearly equally deep, the CI
complex gives a minimum for €INCH that is deeper than the
CI=HCN minimum by about 100 cmi. In addition, the
isomerization barrier is much higher for the Cl complex than
for the Br complex, nearly 300 cm against about 160 cr,

with respect to the deepest minimum. This is because
more of the spin-free stat, (with the deep minimum iV o)
remains in the lowest spirorbit adiabatic state for GIHCN
than for B—HCN because the spirorbit coupling is less-
dominant.
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Another effect of the smaller spirorbit coupling is that the
ground-state parity splitting calculated for-MICH is not 48
as in B—NCH, but about B. According to the explanation of
the parity splittings in Section 3.2, this implies that the effective
electronic angular momentun, for ground-state CtNCH is
smaller than the value for the BNCH complex, which was
close to the atomic value o¥/§). So, one observes that most of but it was smaller than predicted. We believe this to be an effect
the difference of 157 cmi in Do between GFNCH and CH of the surrounding helium cluster, which is known to also reduce
HCN can be understood from the difference in the well depths the rotational constants by a factor of nearly 3. When we
in the lowest spir-orbit adiabatic state. The remainder must compared the calculated and measured rotational conddants
be a dynamical effect, related to the fact that the nuclear motion such a reduction was indeed found, for both-BiCH and Br-
problem must be solved with multiple coupled potential surfaces, HCN. The reduction of the parity splitting is larger by another

parity. Relatively large first-order parity splittings were calcu-
lated and theoretically explained for the levels of BICH with
bend vibration angular momentusy = 0. All other levels of
Br—NCH and the levels of BFHCN have splittings that are
smaller by several orders of magnitude. The large splitting was
indeed observed in the experimental spectrum of IBCH,>

not just on the lowest adiabatic potential.

6. Conclusions

In the preceding paper (paper 1), we presented the full 3
3 matrix of diabatic potential surfaces that correlate with the
2P state of the Br atom. With the use of these potentials and
the inclusion of spir-orbit coupling, we computed rovibronic
energy levels and properties of the H}-HCN complex in
full three-dimensional (3D) calculations. Dynamical variables
in the 3D model are the distanéebetween Br and the center
of mass of HCN, the CH bond lengifty, and the angled
between the NCH axis and the BHCN axis R. The HCN
monomer was kept linear, and the CN bond length was frozen.
We also made 2D calculations in which the CH bond length
was frozen at the vibrationally averaged valugsandr; and
2+1D calculations in which the 3D potentials were averaged
over they = 0 andv = 1 vibrational wave functions of the CH
stretch mode in HCN. Furthermore, we performed 2D calcula-
tions forrcy frozen at the HCN equilibrium value, and 1D
calculations in which bothicy and the Br-HCN distanceR
were frozen.

The complex is found to have two linear structures with nearly
equal binding energies, BNCH and B—HCN. The calculated
binding energies arBy = 352.4 cnt! andDo = 349.1 cn?,
respectively. Both isomers were found experimentalily
superfluid helium clusters in a molecular beam setup. From the

infrared spectra associated with the CH stretch mode in both

isomers, it was concluded thatBNCH has a ground state with
J=1Q| = (,) and that B~HCN has a ground state with=
|Q| = (%/,). This is what we found in our calculations as well.

It could be understood on the basis of the adiabatic and diabatic

potential energy surfaces of paper 1, which are qualitatively

determined by the electrostatic interaction between the quad-

rupole of the B{P) atom and the dipole of HCN, and the very
strong spir-orbit coupling in Br. We predicted the frequencies
of the van der Waals modes of both isomers, both:fex 0
andv = 1 of the CH stretch mode of HCN, and extracted a set

of spectroscopic constants from the energy levels calculated for

J = (%) to (?2). For B—HCN with its degenerate spin-free
ground state ofl symmetry the bend fundamental with= 1
and vibrational angular momentuay = +1, interacting with
the electronicT state withu = 41, produces levels with2|
= (1) and|Q| = (%) that are split by 2.6 cmi, a Renner
Teller nonadiabatic coupling effect. For BNCH with its
nondegeneratE ground state, there is a small indirect Rerner
Teller splitting of 0.9 cm? caused by spinorbit coupling-
induced=—TI mixing. The red shift of the CH stretch frequency
in the complex, relative to free HCN, was calculated to be 1.98
cmt for Br—NCH and 23.11 cm! for Br—HCN. The experi-
menta? values, corrected for the helium matrix shift, are 1.65
and 23.80 cm'.

Another property that could be compared with experiment is
the splitting of the rovibronic levels of andf spectroscopic

factor of 2, however.

Finally, we found an explanation why for the corresponding
Cl complex only the linear GtNCH isomer was observed, not
the CHHCN isomer. We made model calculations with the
potential energy surfaces computed for the Br complex in paper
1, but with the spir-orbit coupling constanf = 882.4 cnt!
of Clinstead ofA = 3685.5 cn1! for Br. The hydrogen-bonded
isomer CHHCN turned out to be less-stable than-GICH by
nearly 160 cm?, whereas BrHCN is less stable than Br
NCH by only 3.3 cmi®. A large part of this energy difference
could be understood by a comparison of the lowest-spibit
adiabatic potential surfaces of the Br and Cl complexes. In
addition, the isomerization barrier is much higher for the ClI
complex than for the Br complex. The same set of spin-free
adiabatic and diabatic potentials gives remarkably different
adiabatic potential surfaces when a different smrbit coupling
term is included.
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